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INTRODUCTION T0 LAPLACE TRANSFORM

= The basic result we got from previous chapter is that the response
of an LTI system is given by convolution of the input and the

impulse response of the system.

= Now we present an alternative representation for signals and LTI

systems.

= The Laplace transform is introduced to represent continuous-time
signals in the s-domain (s is a complex variable), and the concept
of the system function for a continuous-time LTI system is

described.




INTRODUCTION T0 LAPLACE TRANSFORM

= Fourier transform enable us to understand the bahavior of a
system in the frequency domain by allowing a signal x(t) to be

represented as a continuous sum of a complex exponentials.

= Fourier Transform is restricted to only thosse functions for

which the Fourier transform exists




LAPLACE TRANSFORM

= That for a continuous-time LTI system with impulse response h(t), the

output y(t) of the system to the complex exponential input of the form estis

y(t) = T{e%'} = H(s)e**

Where

H(s) = jooh(t) e Stdt




LAPLACE TRANSFORM

= The function H(s) is reffered to as the Laplace transform of h(t).

= For general continuous-time signal x(t), the Laplace transform X(s)
is defined as:

X(s) = j " (D) estdt

= The variable s is generally complex valued and is expressed as:
S=0+jw

- The Lapalace transform is often called the bilateral (or two-sided)

- While Laplace transform in to the unilateral (or one-sided) Laplace
transform is defined as

0.0)

X, (s) = j () e=Stdt




LAPLACE TRANSFORM

= Equation

X(s) = Joox(t) e Stdt

= Is sometimes considered an operator that transforms a signal
x(t) into a function X(s) symbolically represented by

X(s) = L{x(t)}

= and the signal x(t) and its Laplace transform X(s) are said to
form a Laplace transform pair denoted as
x(t) & X(s)




REGION OF CONVERGENCE

= The range of values of the complex variables s for which the
Laplace transform converges is called the region of
convergence (ROC).

= To illustrate the Laplace transform and the associated ROC let
us consider some example:

= Consider the signal
x(t) = e ®u(t) ;areal

- Find the laplace transform of x(t)




REGION OF CONVERGENCE

x(t) = e~ %u(t)

Using equation

X(s) = joox(t) e Stdt

X(s) =] e‘atu(t)e_“dt=f e~ (s+ta)tgy
—00 ot

(00]

— 1 e~ (s+a)t

_S+a

1
= Re(s) > —a
S+a ()

O+

Because lim e~ 6+t = 0 only if Re(s + a) > 0 or Re(s) > —a

t—>oo




REGION OF CONVERGENCE
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REGION OF CONVERGENCE

= Consider the signal
x(t) = —e " %u(—t) ;areal

- The laplace transform X(s) is:

00 0
X(s) =j —e My(—t) e Stdt = —j e~ (Sta)t gy

— 00

1
= R < -
S+ a e(s) “




REGION OF CONVERGENCE
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POLES AND ZEROS

= Usually, X(s) will be a rational function in s, that is,

¥ ags" +a; s+ +a, a{}[(s—zl)*--
(5) = bys"+bys" 4+ - +b _b;}[(f—ﬁ:]'“'

n

(s —p,
N o

= The roots of the numerator polynomial, z, are called the zeros of
X(s) because X(s)= 0 for those values of s.

= Similarly, the roots of the denominator polynomial, p, are called
the poles of X(s) because X(s) is infinite for those values of s

= Traditionally, an " x " is used to indicate each pole location and
an " 0 " is used to indicate each zero.

€



POLES AND ZEROS

25+ 4

X{s}=51+45+3

5§+ 2

A TER IRy

Re(s) > —1

X(s) hasone zeroats=-2 and two polesats=-1ands=-3
with scale factor 2.




POLES AND ZEROS
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LAPLACE TRANSFORM FOR COMMON
SIGNALS

Z[8(1)] =f §(t)e ' dt = 1 all s

lu(1)] =f_: u(t)e " di= [ e " dr




EXAMPLE

= Find the Laplace transform of the following signals
= x(t) = e tu(t) + e ?tu(t)

= x(t) = 8(t) — %e"tu(t)+%e"tu(t)

Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the
following signals x(¢):

(@) x(t)=e % ult)+e Y ulr)

(b) x(t)=e " *u(t)+e*u(—1)

(¢) x(t)=e*u(t) +e Yu(—1)




PROPERTIES OF ROC

Property 1:
Property 2:

Property 3:

The ROC does not contain any poles.

If x(t) is a finite-duration signal, that is, x{(¢) =0 except in a finite interval r, =¢ <1,
(== <t, and 1, < =), then the ROC is the entire s-plane except possibly s = ( or s = =,

If x(1)is a right-sided signal, that is, x(¢) = 0 for 1 <, < =, then the ROC is of the form

Re(s) > o

Frhirs

where o, equals the maximum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the right of the vertical line Re(s)= o _, in the s-plane and thus to the
right of all of the poles of X'(s).

X




PROPERTIES OF ROC

Property 4: If x(z) is a left-sided signal, that is, x(¢} =0 for r > ¢, > —=, then the ROC is of the
form

Re(s) <o,

where a,;, equals the minimum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the left of the vertical line Re(s) = &, in the s-plane and thus to the left
of all of the poles of X(s).

Property 5: [If x(1) is a two-sided signal, that is, x(¢) is an infinite-duration signal that is neither
right-sided nor left-sided, then the ROC 15 of the form

o, < Re(s) <oy

where o, and &, are the real parts of the two poles of X(s), Thus, the ROC is a vertical
strip in the s-plane between the vertical lines Re(s) = o, and Rels) = oy,

€



LAPLACE TRANSOFM PAIRS

Table 3-1 Some Laplace Transforms Pairs

x(t) X(s) ROC
o(t) 1 All s
1
u(t) = Re(s) >0
§
1
—u(—1) — Re(s) <0
s
1
tu(e) e Re(s) >0
k!

Re(s)>0

thu(t)

Ly
F.
+




LAPLACE TRANSOFM PAIRS

1
—al
e u(t) o
1
—e "u(—-1)
5s+a
‘u(t) :
te "t
(:;+.f.1)2
1
—te Yu(—-1)

Re(s) > —Re(a)

Re(s) < —Re(a)

Re(s) > —Re(a)

Re(s) < —Re(a)




LAPLACE TRANSOFM PAIRS

cOs wqtu(t)
sin wtu(t)
e ' cos wptu(t)

e %" sin wytu(l)

5
§° +wﬁ
)
52+m%

5§+ a

(S+a)2+w,§

Wy

(S+a)2+w§,

Re(s) >0

Re(s) >0

Re(s) > — Re(a)

Re(s) > —Rela)




LAPLACE TRANS




LINIARITY

If
x,(1) e X,(5) ROC =R,
x,() < X,(s) ROC =R,
Then a,x,(t)+ax,(t)—a, X(s)+a,X,(s) R'DR NR,

* The set notation A O B means that set A contains set B

« while A N B denotes the intersection of sets A and B,

 that is, the set containing all elements in both A and B.

* This indicates that the ROC of the resultant Laplace transform is at least as large

as the region in common between R1 and R2.
» Usually we have simply R' = R1 N R2 ‘



LINIARITY
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LINIARITY

Linearity

If F1(s) and F>(s) are, respectively, the Laplace transforms of f1(z) and
f2(2), then

Llay fi(t) + a2 fo(1)] = a1 Fi(s) + a2 F>(s) (15.7)

where a; and a; are constants. Equation 15.7 expresses the linearity
property of the Laplace transform. The proofofEq. (15.7) follows readily
from the definition of the Laplace transform in Eq. (15.1).

For example, by the linearity property in Eq. (15.7), we may write

| , 1 . 1 .
Llcoswt] = L [5(83“” + e_f‘”*)] = EE[EJ“‘”] + Eﬁ[e‘j‘”*] (15.8)
But from Example 15.1(b), L[e '] = 1/(s 4+ a). Hence,

| | 1 s
| = ¢ = 15.9
Lleos wi] 2 (5 — jw + s+ jr.u) 52 4+ w? (152)




TIME SHIFTING

[f
x(t) > X(s) ROC=R
then x(t—ty)e—>e ""X(s5) R'=R

This indicates that the ROCs before and after the time-shift operation are
the same.




TIME SHIFTING

Time Shift

LI[f(t—au(t —a)]=e “F(s)

As an example, we know from Eq. (15.9) that
s
5% + w?

L[coswt] =

Using the time-shift property in Eq. (15.17),
s

Llcosw(t —a)u(t —a)] =e @ T




SHIFTING IN THE S-DOMAIN

If

ROC=R

x(t)— X(s)

R' =R + Re(s,)

So)

e x(t) = X(s5—

then

®
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SHIFTING IN S-DOMAIN

Lle™ f()] = F(s +a)

As an example, we know that
s

52 4+ w?
and (15.20)

_ w
sinwt — 5 5
57+ w”

Using the shift property in Eq. (15.19), we obtain the Laplace transform
of the damped sine and damped cosine functions as

cos wt —

s+ a
Lle " coswt] = GraPta (15.21a)
Lle ™ sinwt] = - (15.21b)

(s +a)? + o?




TIME SCALING

x(t) & X(s) ROC =R

1 5
then x(at) e '—&—EX( ) R’ =aR

= This indicates that scaling the time variable t by the factor a
causes an inverse scaling of the variable s by 1/a as well as

amplitude scaling of X(s/a) by 1/]a|
"// %
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TIME SCALING

Scaling
If F (s) 1s the Laplace transform of f(¢).

LIf(at)] = ﬂlf (=)

For example, we know from Example 15.2 that
_ 0)
[ = 15.13
L[sin wt] R ( )

Using the scaling property in Eq. (15.12),
1 0) 2w
= 210 (15.14)

.C[Siﬂ 2&)!] = 5 (9/2)2 I wz

which may also be obtained from Eq. (15.13) by replacing « with 2w.




TIME REVERSAL

x(t) e X(s) ROC=R
then x(=t)e—> X(—s) R'= —R

= Time reversal of x(t) produces a reversal of both the ¢ and the
Jjw axes in the s-plane.




SUMMARY OF LAPLACE TRANSFORM
PROPERTY

Property Signal Transform ROC
x(1) X(s) R
x (1) X(s) R,
x5(1) X,(s) R,
Linearity a,x () +a,x,(1) a, X\(s)+a,Xs) R'DR,NR,
Time shifting x(t —ty) e " X(s) R' =R
Shifting in s e x(1) X(s =59) R’ =R + Re(s,)
1
Time scaling x(at) HX(S} R' =aR
Time reversal x(—t) X(-5) R'=-R
dx(t)
Differentiation in ¢ 7 sX(s) R OR
. : dX(s)
Differentiation in s —tx(t) 7 R'=R
1
Integration f' x(r)dr ;X{s} R' DR N {Re(s) > 0}
Convolution x,(1)* x,(¢) X () X,(s) R'DR,NR,

)
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INVERSION FORMULA

= Inversion of the Laplace transform to find the signal x(t) from its
Laplace transform X(s) is called the inverse Laplace transform,
symbolically denoted as

x(8) = L7 {X(s)}

= Generally the formula is \i
c+joo

1
x(t) = — j X(s)eStds
2T]
c—joo
In this integral, the real c is to be selected such that if the ROC of X(s) is o, < Re(s) < a,,

then o, <c¢ <wo,. The evaluation of this inverse Laplace transform integral requires an
understanding of complex variable theory.

@



TABLES OF LAPLACE TRANSFORM PAIRS

= In the second method for the inversion of X(s), we attempt to
express X(s) as a sum

X(s)=X,(s)+ - +X.(5)

= where X,(s),.. ., X, (s) are functions with known inverse
transforms x,(t), .. ., x,(t). From the linearity property it follows
that

x(t)y=x(t)+ - +x, (1)

I




PARTIAL FRACTION EXPANSION

= If X(s) is a rational function, that is, of the form

N (smz) (s
" D(s) (s—p) - (s—py)

X(s)

= a simple technique based on partial-fraction expansion can be
used for the inversion of X(s)




PARTIAL FRACTION EXPANSION

a) When X(s) is a proper rational function, that is, when m < n:
1. Simple Pole Case:

= If all poles of X(s), that is, all zeros of D(s), are simple (or
distinct), then X(s) can be written as
C C,
X(s)= + oo+
3§ = p| § =P,

= where coefficients ¢, are given by

Cp = {3 _'pk]X{5”3=m




PARTIAL FRACTION EXPANSION

2. Multiple Pole Case

= If D(s) has multiple roots, that is, if it contains factors of the form
(S _pi)rs
= we say that p, is the multiple pole of X(s) with multiplicity r.

= Then the expansion of X(s) will consist of terms of the form

- =+ ot 4= -
S=pi  (s—p;) (s —p;)

= Where 1 d*
A=y (s =) X(s),-,




PARTIAL FRACTION EXPANSION

b) When X(s) is an improper rational function, whenm > n :
c) If m = n, by long division we can write X(s) in the form

N(s) R(s)

H{"I":I = .D-E.Tj- _Q{‘j’,}_l_ .E_}[.Sj




EXAMPLES

= Find the inverse Laplace Transform of the following X(s)

25 +4

(a) X{5}=52+45+3,R¢(3}:}—1
25+ 4

(b) X{$)=m,Rﬁ(5]€: -3
25+ 4

(c) X(3}=51+4£+3,—3{Rc(5}<:—1

@  X(s) s2+2s+5 Re(s) > 3

- (s +3)(s +5)°

25 + 1

X(s) = . Re(s)> -2
5+
s+ 6s+ 7

X(s)= —— , Re(s) > —1
s°+ 35+ 2
sTH25°46

X(s)= - , Rels)>10

§°+ 35




A BC

25 + 4 s+ 2

X(s) =

c c
| N 2
s+ 1 s+ 3

cp=(s+1)X(s)l- -

25+2 :
a S+3;__|-
¥ 1 1
= +
() s+1 s+3

f+45+3=2(5+lﬂs+3)

¢y = (5 +3) X(5)l;- s

s+ 2

x(ty=eu(t) +e u(t)=(e "+eu(t)




D

A, 2 | 10

X(s)= - -

C, N Ay
s+3  s+5  (545)°

+ 2
+3 s+5 (s+35)

X(s)=5

¢ = (s +3)X(s);~
x(t)=2e Mu(t) —e Mu(t) — 10te >'u(t)

2
_yhass =2 =[2e " —e " — 10te ™" Ju(r)

(5 +5)

$= =3

Ay={(s+5)X(5)|-_s

d Ty,
A= s+ s) x|
d |[s?+2s5+5 s2+ 65+ 1 1
_ds_ s+3 s B (5+3)2 -




D

Note that there 1s a simpler way of finding A, without resorting to differentiation. This is
shown as follows: First find ¢, and A, according to the regular procedure. Then substituting the
values of ¢, and A, into Eq. (3.84), we obtain

sT+ 25+ 5 2 A, 10
= -+ —_—
(s+3)(s+5)° s+3 s+5  (5+5)°

Setting s = 0 on both sides of the above expression, we have

A, 10

from which we obtain A, = —1.




X(s) 2s+1  2(s+2)-3 , 3
YT T 512 T 52

Re(s) > —2, x(¢) is a right-sided signal

x(1) =28(t) — 3e u(t)




i

X(s)

i

X\(s)=

2 3s+5
s ot e =(s+ DX ()], = =2
s>+ 3s + 2 S+2 ls=—1
+ Is+5
1 + 3+ 5 c,=(s+2)X,(s)|.__,= =1
s+ 35+ 2 s+ 1 |o=—>
35+ 5 1
1 + ° X(s)=1+ +
s+ D)+ 2) s+1 s+2
Re(s) > — 1. Thus, x(¢) is a right-sided signal
I3s+5 o o
(s+1D(s+2) s+1 5+2

x(t)y=8(t)+(2e " +e *)u(t)

€



s3+25246 3s+6
X(s) = 52+ 3s =3_1+s(5+3)
3s + 6 C ¢
X'(S)=s(s+3) EERETE
Js+6
¢y =5X,(8)];-0= s+ 3 5={}=2
3s+6
c;=(s+3)X,(8)|;- 3= p j=_3=1

2 1
X()=s =1+ 2+ 03 x(1) =8(1) = 8() + (2+ e~ )u(1)

()




&) THE SYSTEM FUNCTION



THE SYSTEM FUNCTION

y(t) =x(t)*h(t)
Applying the convolution property

Y(s)=X(s)H(s)

Y(s)
" X(5)

H{(s)




CHARACTERIZATION OF LTT SYSTEM

= Many properties of continuous-time LTI systems can be closely
associated with the characteristics of H(s) in the s-plane and in
particular with the pole locations and the ROC.

——-

x(t)

|

h(?)

X(s)

y{1)=x(1) = h(1)

|

Y(s$)=X(s)H(s)




CAUSALITY

= For a causal continuous-time LTI system, we have

h(t)=0 t <0

= Since h(t) is a right-sided signal, the corresponding
requirement on H(s) is that the ROC of H(s) must be of the form

Re(s) >

= That is, the ROC is the region in the s-plane to the right of all of
the system poles.

{TI'I‘I ax

= Similarly, if the system is anticausal, then
h(t)=0 t >0

Re(s) <o,

min




STABILITY

= A continuous-time LTI system is BIBO stable if and only if

S0

f |h(t)|dt <o

—

H(s)sf h(t)e™'dt  Let s =jw. Then

|H(jo)| =

[ n(ye = ar| < [ |h(rye |dr

=j'm lh(t)|dt <=

= The corresponding requirement on H(s) is that the ROC of H(s)
contains the jw-axis (that is, s = jw)

@



CAUSAL AND STABLE SYSTEMS

= If the system is both causal and stable, then

= all the poles of H(s) must lie in the left half of the s-plane; that is,
they all have negative real parts because the ROC is of the form

Re(s) > o,
= and since the jw axis is included in the ROC, we must have a

O < U




EXAMPLES

The output y(t) of a continuous time LTI system is found to be
2e 3ty (t) when the input x(t) is u(t)

= Find the impulse response h(t) of the system

= Find the output y(t) when the input x(t) is etu(t)

Answer y(t)=(—e "+ 3e ")u(1)
. x(H)=u(t) > X(s)== Re(s)>0
cy()=2eu(t) >Y()=—  Re(s)>-3
_Y(s) _ 2s _2(s+3)-6 _ , 6
) H(S)_X(s) T s+3 2 H(S)_ s+3 =2 s+3

« h(t) = 26(t) — 6e3tu(t)




EXAMPLES

= Consider a continuous time LTI system for which the input x(t)
and output y(t) are related by:

y"(1) +y'(t) = 2y(t) = x(t)

= Find the system function H(s)

= Determine the impulse response (h(t)) for each of the following
cases:

= The system is causal
= The system is stable
= The system is neither causal nor stable




y' (1) +y'(t) = 2y(1) = x(1)
s?Y(s) +sY(s) —2Y(s) =X(s)
(s*+5—=2)Y(s) =X(s)

Y(s)

A0 = %)

1 1

T 24s-2 (s+2)(s—-1)




1 1 1 1 1
H(s) = = - —
(s+2)(s—1) 3s+2 3s5s-1
Causal ROC of H(s)is Re(s)> 1. h(t) = —5(e™* —e')u(1)
Stable ROC of H(s) is —2 < Re(s) < 1. h(t) = —3e~2u(t) — fe'u( —1)
Not Causal Not Stable

ROC of H(s) is Re(s) < —2. h(f) — %E-—-ltu(_t _ %E'H( —I}




