## LAPLACE TRANSFORM

FEG2D3
-INW-
2016

## INTRODUCTION TO LAPLACE TRANSFORM

- The basic result we got from previous chapter is that the response of an LTI system is given by convolution of the input and the impulse response of the system.
- Now we present an alternative representation for signals and LTI systems.
- The Laplace transform is introduced to represent continuous-time signals in the s-domain (s is a complex variable), and the concept of the system function for a continuous-time LTI system is described.


## INTRODUCTION TO LAPLACE TRANSFORM

- Fourier transform enable us to understand the bahavior of a system in the frequency domain by allowing a signal $x(t)$ to be represented as a continuous sum of a complex exponentials.
- Fourier Transform is restricted to only thosse functions for which the Fourier transform exists


## LAPLACE TRANSFORM

- That for a continuous-time LTI system with impulse response $h(t)$, the output $y(t)$ of the system to the complex exponential input of the form $e^{\text {st }}$ is

$$
y(t)=T\left\{e^{s t}\right\}=H(s) e^{s t}
$$

Where

$$
H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t
$$

## LAPLACE TRANSFORM

- The function $\mathrm{H}(\mathrm{s})$ is reffered to as the Laplace transform of $h(t)$.
- For general continuous-time signal $\mathbf{x}(\mathrm{t})$, the Laplace transform $\mathrm{X}(\mathrm{s})$ is defined as:

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

- The variable $s$ is generally complex valued and is expressed as:

$$
s=\sigma+j \omega
$$

- The Lapalace transform is often called the bilateral (or two-sided)
- While Laplace transform in to the unilateral (or one-sided) Laplace transform is defined as

$$
X_{1}(s)=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t
$$

## LAPLACE TRANSFORM

- Equation

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

- Is sometimes considered an operator that transforms a signal $\mathrm{x}(\mathrm{t})$ into a function $\mathrm{X}(\mathrm{s})$ symbolically represented by

$$
X(s)=\mathcal{L}\{x(t)\}
$$

- and the signal $\mathrm{x}(\mathrm{t})$ and its Laplace transform $\mathrm{X}(\mathrm{s})$ are said to form a Laplace transform pair denoted as

$$
x(t) \leftrightarrow X(s)
$$

## REGION OF CONVERGENCE

- The range of values of the complex variables $s$ for which the Laplace transform converges is called the region of convergence (ROC).
- To illustrate the Laplace transform and the associated ROC let us consider some example:
- Consider the signal

$$
x(t)=e^{-a t} u(t) ; \text { a real }
$$

- Find the laplace transform of $x(t)$


## REGION OF CONVERGENCE

$x(t)=e^{-a t} u(t)$
Using equation
$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$
$X(s)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-s t} d t=\int_{0^{+}}^{\infty} e^{-(s+a) t} d t$
$=-\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{0^{+}} ^{\infty}=\frac{1}{s+a} \quad \operatorname{Re}(s)>-a$
Because $\lim _{t \rightarrow \infty} e^{-(s+a) t}=0$ only if $\operatorname{Re}(s+a)>0$ or $\operatorname{Re}(s)>-a$

## RECION OF CONVERGENCE



## REGION OF CONVERGENCE

- Consider the signal

$$
x(t)=-e^{-a t} u(-t) ; \text { a real }
$$

- The laplace transform $\mathrm{X}(\mathrm{s})$ is:

$$
\begin{aligned}
& X(s)=\int_{-\infty}^{\infty}-e^{-a t} u(-t) e^{-s t} d t=-\int_{-\infty}^{0} e^{-(s+a) t} d t \\
& =\frac{1}{s+a} \operatorname{Re}(s)<-a
\end{aligned}
$$

## RECION OF CONVERGENCE



## POLES AND ZEROS

- Usually, $\mathrm{X}(\mathrm{s})$ will be a rational function in s , that is,

$$
X(s)=\frac{a_{0} s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}{b_{0} s^{n}+b_{1} s^{n-1}+\cdots+b_{n}}=\frac{a_{0}}{b_{0}} \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)} \text { zeros }
$$

- The roots of the numerator polynomial, $\mathrm{z}_{\mathrm{k}}$ are called the zeros of $X(s)$ because $X(s)=0$ for those values of $s$.
- Similarly, the roots of the denominator polynomial, $\mathrm{p}_{\mathrm{k}}$ are called the poles of $X(s)$ because $X(s)$ is infinite for those values of $s$
- Traditionally, an " x " is used to indicate each pole location and an " 0 " is used to indicate each zero.


## POLES AND ZEROS

$$
\begin{aligned}
X(s) & =\frac{2 s+4}{s^{2}+4 s+3} \\
& =2 \frac{s+2}{(s+1)(s+3)} \quad \operatorname{Re}(s)>-1
\end{aligned}
$$

$X(s)$ has one zero at $s=-2$ and two poles at $s=-1$ and $s=-3$ with scale factor 2.

## POLES AND ZEROS



## LAPLACE TRANSFORM FOR COMMON SIGNALS

$$
\begin{aligned}
\mathscr{L}[\delta(t)] & =\int_{-\infty}^{\infty} \delta(t) e^{-s t} d t=1 \quad \text { all } s \\
\mathscr{L}[u(t)] & =\int_{-\infty}^{\infty} u(t) e^{-s t} d t=\int_{0^{+}}^{\infty} e^{-s t} d t \\
& =-\left.\frac{1}{s} e^{-s t}\right|_{0^{+}} ^{\infty}=\frac{1}{s} \quad \operatorname{Re}(s)>0
\end{aligned}
$$

## EXAMPLE

- Find the Laplace transform of the following signals
- $x(t)=e^{-t} u(t)+e^{-2 t} u(t)$
- $x(t)=\delta(t)-\frac{3}{4} e^{-t} u(t)+\frac{1}{2} e^{-t} u(t)$

Find the Laplace transform $X(s)$ and sketch the pole-zero plot with the ROC for the following signals $x(t)$ :
(a) $x(t)=e^{-2 t} u(t)+e^{-3 t} u(t)$
(b) $x(t)=e^{-3 t} u(t)+e^{2 t} u(-t)$
(c) $x(t)=e^{2 t} u(t)+e^{-3 t} u(-t)$

## PROPERTIES OF ROC

Property 1: The ROC does not contain any poles.
Property 2: If $x(t)$ is a finite-duration signal, that is, $x(t)=0$ except in a finite interval $t_{1} \leq t \leq t_{2}$ $\left(-\infty<t_{1}\right.$ and $\left.t_{2}<\infty\right)$, then the ROC is the entire $s$-plane except possibly $s=0$ or $s=\infty$.
Property 3: If $x(t)$ is a right-sided signal, that is, $x(t)=0$ for $t<t_{1}<\infty$, then the ROC is of the form

$$
\operatorname{Re}(s)>\sigma_{\max }
$$

where $\sigma_{\max }$ equals the maximum real part of any of the poles of $X(s)$. Thus, the ROC is a half-plane to the right of the vertical line $\operatorname{Re}(s)=\sigma_{\max }$ in the $s$-plane and thus to the right of all of the poles of $X(s)$.

## PROPERTIES OF ROC

Property 4: If $x(t)$ is a left-sided signal, that is, $x(t)=0$ for $t>t_{2}>-\infty$, then the ROC is of the form

$$
\operatorname{Re}(s)<\sigma_{\min }
$$

where $\sigma_{\min }$ equals the minimum real part of any of the poles of $X(s)$. Thus, the ROC is a half-plane to the left of the vertical line $\operatorname{Re}(s)=\sigma_{\text {min }}$ in the $s$-plane and thus to the left of all of the poles of $X(s)$.

Property 5: If $x(t)$ is a two-sided signal, that is, $x(t)$ is an infinite-duration signal that is neither right-sided nor left-sided, then the ROC is of the form

$$
\sigma_{1}<\operatorname{Re}(s)<\sigma_{2}
$$

where $\sigma_{1}$ and $\sigma_{2}$ are the real parts of the two poles of $X(s)$. Thus, the ROC is a vertical strip in the $s$-plane between the vertical lines $\operatorname{Re}(s)=\sigma_{1}$ and $\operatorname{Re}(s)=\sigma_{2}$.

## LAPLACE TRANSOFM PAIRS

Table 3-1 Some Laplace Transforms Pairs

| $x(t)$ | $X(s)$ | ROC |
| :--- | :---: | :---: |
| $\delta(t)$ | 1 | All $s$ |
| $u(t)$ | $\frac{1}{s}$ | $\operatorname{Re}(s)>0$ |
| $-u(-t)$ | $\frac{1}{s}$ | $\operatorname{Re}(s)<0$ |
| $t u(t)$ | $\frac{1}{s^{2}}$ | $\operatorname{Re}(s)>0$ |
| $t^{k} u(t)$ | $\frac{k!}{s^{k+1}}$ | $\operatorname{Re}(s)>0$ |

## LAPLACE TRANSOFM PAIRS

$$
\begin{array}{lcl}
e^{-a t} u(t) & \frac{1}{s+a} & \operatorname{Re}(s)>-\operatorname{Re}(a) \\
-e^{-a t} u(-t) & \frac{1}{s+a} & \operatorname{Re}(s)<-\operatorname{Re}(a) \\
t e^{-a t} u(t) & \frac{1}{(s+a)^{2}} & \operatorname{Re}(s)>-\operatorname{Re}(a) \\
-t e^{-a t} u(-t) & \frac{1}{(c+a)^{2}} & \operatorname{Re}(s)<-\operatorname{Re}(a)
\end{array}
$$

## LAPLACE TRANSOFM PAIRS

$\cos \omega_{0} t u(t)$
$\frac{s}{s^{2}+\omega_{0}^{2}}$
$\sin \omega_{0} t u(t)$
$e^{-a t} \cos \omega_{0} t u(t)$
$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$
$s+a$
$\overline{(s+a)^{2}+\omega_{0}^{2}}$
$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}$
$\operatorname{Re}(s)>0$
$\operatorname{Re}(s)>0$
$\operatorname{Re}(s)>-\operatorname{Re}(a)$
$\operatorname{Re}(s)>-\operatorname{Re}(a)$

## LAPLACE TRANSFORM PROPERTIES

## LINIARITY

If

$$
\begin{array}{ll}
x_{1}(t) \leftrightarrow X_{1}(s) & \text { ROC }=R_{1} \\
x_{2}(t) \leftrightarrow X_{2}(s) & \text { ROC }=R_{2}
\end{array}
$$

Then

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t) \leftrightarrow a_{1} X_{1}(s)+a_{2} X_{2}(s)
$$

$R^{\prime} \supset R_{1} \cap R_{2}$

- The set notation $\mathrm{A} \supset B$ means that set A contains set B
- while $\mathrm{A} \cap B$ denotes the intersection of sets A and B ,
- that is, the set containing all elements in both $A$ and $B$.
- This indicates that the ROC of the resultant Laplace transform is at least as large as the region in common between R1 and R2.
- Usually we have simply $\mathrm{R}^{\prime}=R 1 \cap R 2$


## LINIARITY



## LINIARITY

## Linearity

If $F_{1}(s)$ and $F_{2}(s)$ are, respectively, the Laplace transforms of $f_{1}(t)$ and $f_{2}(t)$, then

$$
\begin{equation*}
\mathcal{L}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(s)+a_{2} F_{2}(s) \tag{15.7}
\end{equation*}
$$

where $a_{1}$ and $a_{2}$ are constants. Equation 15.7 expresses the linearity property of the Laplace transform. The proof of Eq. (15.7) follows readily from the definition of the Laplace transform in Eq. (15.1).

For example, by the linearity property in Eq. (15.7), we may write

$$
\begin{equation*}
\mathcal{L}[\cos w t]=\mathcal{L}\left[\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)\right]=\frac{1}{2} \mathcal{L}\left[e^{j \omega t}\right]+\frac{1}{2} \mathcal{L}\left[e^{-j \omega t}\right] \tag{15.8}
\end{equation*}
$$

But from Example 15.1(b), $\mathcal{L}\left[e^{-a t}\right]=1 /(s+a)$. Hence,

$$
\begin{equation*}
\mathcal{L}[\cos w t]=\frac{1}{2}\left(\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right)=\frac{s}{s^{2}+\omega^{2}} \tag{15.9}
\end{equation*}
$$

## TIINE SHIFTING

## If

then

$$
\begin{array}{clrl}
x(t) & \leftrightarrow X(s) & \mathrm{ROC}=R \\
x\left(t-t_{0}\right) & \leftrightarrow e^{-s t_{0}} X(s) & R^{\prime}=R
\end{array}
$$

This indicates that the ROCs before and after the time-shift operation are the same.

## TIME SHIFTING

## Time Shift

$$
\mathcal{L}[f(t-a) u(t-a)]=e^{-a s} F(s)
$$

As an example, we know from Eq. (15.9) that

$$
\mathcal{L}[\cos \omega t]=\frac{s}{s^{2}+\omega^{2}}
$$

Using the time-shift property in Eq. (15.17),

$$
\mathcal{L}[\cos \omega(t-a) u(t-a)]=e^{-a s} \frac{s}{s^{2}+\omega^{2}}
$$

## SHIFTING IN THE S-DOMMIN

If
then

$$
\begin{aligned}
x(t) \leftrightarrow X(s) & \mathrm{ROC}=R \\
e^{s_{0} x} x(t) \leftrightarrow X\left(s-s_{0}\right) & R^{\prime}=R+\operatorname{Re}\left(s_{0}\right)
\end{aligned}
$$

- This indicates that the ROC associated with $\mathrm{X}\left(\mathrm{s}-\mathrm{s}_{0}\right)$ is that of $X(s)$ shifted by $\operatorname{Re}\left(\mathrm{s}_{0}\right)$.




## SHIFTING IN S-DOMAIN

$$
\mathcal{L}\left[e^{-a t} f(t)\right]=F(s+a)
$$

As an example, we know that

$$
\cos \omega t \quad \Longleftrightarrow \quad \frac{s}{s^{2}+\omega^{2}}
$$

and

$$
\sin \omega t \quad \Longleftrightarrow \quad \frac{\omega}{s^{2}+\omega^{2}}
$$

Using the shift property in Eq. (15.19), we obtain the Laplace transform of the damped sine and damped cosine functions as

$$
\begin{align*}
\mathcal{L}\left[e^{-a t} \cos \omega t\right] & =\frac{s+a}{(s+a)^{2}+\omega^{2}}  \tag{15.21a}\\
\mathcal{L}\left[e^{-a t} \sin \omega t\right] & =\frac{\omega}{(s+a)^{2}+\omega^{2}} \tag{15.21b}
\end{align*}
$$

## TINE SCALING

If
then

$$
\begin{aligned}
x(t) & \leftrightarrow X(s) & \mathrm{ROC} & =R \\
x(a t) & \leftrightarrow \frac{1}{|a|} X\left(\frac{s}{a}\right) & R^{\prime} & =a R
\end{aligned}
$$

- This indicates that scaling the time variable $t$ by the factor a causes an inverse scaling of the variable $s$ by l/a as well as amplitude scaling of $X(s / a)$ by $1 /|a|$



## 

## Scaling

If $F(s)$ is the Laplace transform of $f(t)$

$$
\mathcal{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)
$$

For example, we know from Example 15.2 that

$$
\begin{equation*}
\mathcal{L}[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}} \tag{15.13}
\end{equation*}
$$

Using the scaling property in Eq. (15.12),

$$
\begin{equation*}
\mathcal{L}[\sin 2 \omega t]=\frac{1}{2} \frac{\omega}{(s / 2)^{2}+\omega^{2}}=\frac{2 \omega}{s^{2}+4 \omega^{2}} \tag{15.14}
\end{equation*}
$$

which may also be obtained from Eq. (15.13) by replacing $\omega$ with $2 \omega$.

## TINE REVERSAL

If
then

$$
\begin{gathered}
x(t) \leftrightarrow X(s) \quad \text { ROC }=R \\
x(-t) \leftrightarrow X(-s) \quad R^{\prime}=-R
\end{gathered}
$$

- Time reversal of $x(t)$ produces a reversal of both the $\sigma$ and the $j \omega$ axes in the s-plane.


## SUMMARY OF LAPLACE TRANSFORM PROPERTY

| Property | Signal | Transform | ROC |
| :--- | :---: | :---: | :---: |
|  | $x(t)$ | $X(s)$ | $R$ |
|  | $x_{1}(t)$ | $X_{1}(s)$ | $R_{1}$ |
| Linearity | $x_{2}(t)$ | $X_{2}(s)$ | $R_{2}$ |
| Time shifting | $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ | $a_{1} X_{1}(s)+a_{2} X_{2}(s)$ | $R^{\prime} \supset R_{1} \cap R_{2}$ |
| Shifting in $s$ | $x\left(t-t_{0}\right)$ | $e^{-s t_{0}} X(s)$ | $R^{\prime}=R$ |
| Time scaling | $e^{s_{0} t x(t)}$ | $X\left(s-s_{0}\right)$ | $R^{\prime}=R+\operatorname{Re}\left(s_{0}\right)$ |
| Time reversal | $x(a t)$ | $\frac{1}{\|a\|} X(s)$ | $R^{\prime}=a R$ |
| Differentiation in $t$ | $x(-t)$ | $X(-s)$ | $R^{\prime}=-R$ |
| Differentiation in $s$ | $\frac{d x(t)}{d t}$ | $s X(s)$ | $R^{\prime}=R$ |
| Integration | $-t x(t)$ | $\frac{d X(s)}{d s}$ | $R^{\prime} \supset R \cap\{\operatorname{Re}(s)>0\}$ |
| Convolution | $\int_{-\infty}^{t} x(\tau) d \tau$ | $\frac{1}{s} X(s)$ | $R^{\prime} \supset R_{1} \cap R_{2}$ |

## INVERSE LAPLLCE TRANSFORM

## INVERSION FORMULA

- Inversion of the Laplace transform to find the signal $x(t)$ from its Laplace transform $\mathrm{X}(\mathrm{s})$ is called the inverse Laplace transform, symbolically denoted as

$$
x(t)=\mathcal{L}^{-1}\{X(s)\}
$$

- Generally the formula is

$$
x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s
$$

In this integral, the real $c$ is to be selected such that if the ROC of $X(s)$ is $\sigma_{1}<\operatorname{Re}(s)<\sigma_{2}$, then $\sigma_{1}<c<\sigma_{2}$. The evaluation of this inverse Laplace transform integral requires an understanding of complex variable theory.

## TABLES OF LAPLACE TRANSFORM PAIRS

- In the second method for the inversion of $\mathrm{X}(\mathrm{s})$, we attempt to express $\mathrm{X}(\mathrm{s})$ as a sum

$$
X(s)=X_{1}(s)+\cdots+X_{n}(s)
$$

- where $\mathrm{X}_{1}(\mathrm{~s}), \ldots, \mathrm{X}_{\mathrm{n}}(\mathrm{s})$ are functions with known inverse transforms $\mathrm{x}_{1}(\mathrm{t}), \ldots, \mathrm{x}_{\mathrm{n}}(\mathrm{t})$. From the linearity property it follows that

$$
x(t)=x_{1}(t)+\cdots+x_{n}(t)
$$

## PARTIAL FRACTION EXPANSION

- If $X(s)$ is a rational function, that is, of the form

$$
X(s)=\frac{N(s)}{D(s)}=k \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)}
$$

- a simple technique based on partial-fraction expansion can be used for the inversion of $\mathrm{X}(\mathrm{s})$


## PARTIAL FRACTION EXPANSION

a) When $\mathrm{X}(\mathrm{s})$ is a proper rational function, that is, when $\mathrm{m}<\mathrm{n}$ :

1. Simple Pole Case:

- If all poles of $X(s)$, that is, all zeros of $D(s)$, are simple (or distinct), then $X(s)$ can be written as

$$
X(s)=\frac{c_{1}}{s-p_{1}}+\cdots+\frac{c_{n}}{s-p_{n}}
$$

- where coefficients $\mathrm{C}_{\mathrm{k}}$ are given by

$$
c_{k}=\left.\left(s-p_{k}\right) X(s)\right|_{s=p_{k}}
$$

## PARTIAL FRACTION EXPANSION

2. Multiple Pole Case

- If $\mathrm{D}(\mathrm{s})$ has multiple roots, that is, if it contains factors of the form ( $\left.\mathrm{s}-\mathrm{p}_{\mathrm{i}}\right)^{\mathrm{r}}$,
- we say that $p_{i}$ is the multiple pole of $X(s)$ with multiplicity $r$.
- Then the expansion of $\mathrm{X}(\mathrm{s})$ will consist of terms of the form

$$
\frac{\lambda_{1}}{s-p_{i}}+\frac{\lambda_{2}}{\left(s-p_{i}\right)^{2}}+\cdots+\frac{\lambda_{r}}{\left(s-p_{i}\right)^{r}}
$$

- Where

$$
\lambda_{r-k}=\left.\frac{1}{k!} \frac{d^{k}}{d s^{k}}\left[\left(s-p_{i}\right)^{r} X(s)\right]\right|_{s=p_{i}}
$$

## PARTIAL FRACTION EXPANSION

b) When $\mathrm{X}(\mathrm{s})$ is an improper rational function, when $\mathrm{m} \geq n$ :
c) If $m \geq n$, by long division we can write $X(s)$ in the form

$$
X(s)=\frac{N(s)}{D(s)}=Q(s)+\frac{R(s)}{D(s)}
$$

## EXAMPLES

- Find the inverse Laplace Transform of the following $X(s)$
(a) $X(s)=\frac{2 s+4}{s^{2}+4 s+3}, \operatorname{Re}(s)>-1$
(b) $X(s)=\frac{2 s+4}{s^{2}+4 s+3}, \operatorname{Re}(s)<-3$
(c) $X(s)=\frac{2 s+4}{s^{2}+4 s+3},-3<\operatorname{Re}(s)<-1$

$$
\begin{aligned}
& X(s)=\frac{2 s+1}{s+2}, \operatorname{Re}(s)>-2 \\
& X(s)=\frac{s^{2}+6 s+7}{s^{2}+3 s+2}, \operatorname{Re}(s)>-1 \\
& X(s)=\frac{s^{3}+2 s^{2}+6}{s^{2}+3 s}, \operatorname{Re}(s)>0
\end{aligned}
$$

(d) $X(s)=\frac{s^{2}+2 s+5}{(s+3)(s+5)^{2}} \quad \operatorname{Re}(s)>-3$

## А, B, С

$$
\begin{aligned}
X(s)= & \frac{2 s+4}{s^{2}+4 s+3}=2 \frac{s+2}{(s+1)(s+3)} \\
= & \frac{c_{1}}{s+1}+\frac{c_{2}}{s+3} \\
c_{1}= & \left.(s+1) X(s)\right|_{s=-1} \quad c_{2}=\left.(s+3) X(s)\right|_{s=-3} \\
= & \left.2 \frac{s+2}{s+3}\right|_{s=-1}=1 \quad=\left.2 \frac{s+2}{s+1}\right|_{s=-3}=1 \\
& X(s)=\frac{1}{s+1}+\frac{1}{s+3} \quad x(t)=e^{-t} u(t)+e^{-3 t} u(t)=\left(e^{-t}+e^{-3 t}\right) u(t)
\end{aligned}
$$

## D

$$
X(s)=\frac{c_{1}}{s+3}+\frac{\lambda_{1}}{s+5}+\frac{\lambda_{2}}{(s+5)^{2}}
$$

$$
X(s)=\frac{2}{s+3}-\frac{1}{s+5}-\frac{10}{(s+5)^{2}}
$$

$$
c_{1}=\left.(s+3) X(s)\right|_{s=-3}
$$

$$
=\left.\frac{s^{2}+2 s+5}{(s+5)^{2}}\right|_{s=-3}=2
$$

$$
x(t)=2 e^{-3 t} u(t)-e^{-5 t} u(t)-10 t e^{-5 t} u(t)
$$

$$
=\left[2 e^{-3 t}-e^{-5 t}-10 t e^{-5 t}\right] u(t)
$$

$$
\lambda_{2}=\left.(s+5)^{2} X(s)\right|_{s=-5}
$$

$$
\lambda_{1}=\left.\frac{d}{d s}\left[(s+5)^{2} X(s)\right]\right|_{s=-5}
$$

$$
=\left.\frac{d}{d s}\left[\frac{s^{2}+2 s+5}{s+3}\right]\right|_{s=-5}=\left.\frac{s^{2}+6 s+1}{(s+3)^{2}}\right|_{s=-5}=-1
$$

## D

Note that there is a simpler way of finding $\lambda_{1}$ without resorting to differentiation. This is shown as follows: First find $c_{1}$ and $\lambda_{2}$ according to the regular procedure. Then substituting the values of $c_{1}$ and $\lambda_{2}$ into Eq. (3.84), we obtain

$$
\frac{s^{2}+2 s+5}{(s+3)(s+5)^{2}}=\frac{2}{s+3}+\frac{\lambda_{1}}{s+5}-\frac{10}{(s+5)^{2}}
$$

Setting $s=0$ on both sides of the above expression, we have
$\frac{5}{75}=\frac{2}{3}+\frac{\lambda_{1}}{5}-\frac{10}{25}$
from which we obtain $\lambda_{1}=-1$.

$$
X(s)=\frac{2 s+1}{s+2}=\frac{2(s+2)-3}{s+2}=2-\frac{3}{s+2}
$$

$\operatorname{Re}(s)>-2, x(t)$ is a right-sided signal

$$
x(t)=2 \delta(t)-3 e^{-2 t} u(t)
$$

$$
\begin{aligned}
X(s) & =\frac{s^{2}+6 s+7}{s^{2}+3 s+2} & c_{1}=\left.(s+1) X_{1}(s)\right|_{s=-1}=\left.\frac{3 s+5}{s+2}\right|_{s=-1}=2 \\
& =1+\frac{3 s+5}{s^{2}+3 s+2} & c_{2}=\left.(s+2) X_{1}(s)\right|_{s=-2}=\left.\frac{3 s+5}{s+1}\right|_{s=-2}=1 \\
& =1+\frac{3 s+5}{(s+1)(s+2)} & X(s)=1+\frac{2}{s+1}+\frac{1}{s+2}
\end{aligned}
$$

$$
\begin{array}{r}
X_{1}(s)=\frac{3 s+5}{(s+1)(s+2)}=\frac{c_{1}}{s+1}+\frac{c_{2}}{s+2} \\
x(t)=\delta(t)+\left(2 e^{-t}+e^{-2 t}\right) u(t)
\end{array}
$$

$$
\begin{aligned}
X(s) & =\frac{s^{3}+2 s^{2}+6}{s^{2}+3 s}=s-1+\frac{3 s+6}{s(s+3)} \\
X_{1}(s) & =\frac{3 s+6}{s(s+3)}=\frac{c_{1}}{s}+\frac{c_{2}}{s+3} \\
c_{1} & =\left.s X_{1}(s)\right|_{s=0}=\left.\frac{3 s+6}{s+3}\right|_{s=0}=2 \\
c_{2} & =\left.(s+3) X_{1}(s)\right|_{s=-3}=\left.\frac{3 s+6}{s}\right|_{s=-3}=1 \\
X(s) & =s-1+\frac{2}{s}+\frac{1}{s+3} \quad x(t)=\delta^{\prime}(t)-\delta(t)+\left(2+e^{-3 t}\right) u(t)
\end{aligned}
$$

## THE <br> SYSTEM FUNCTION

## THE SYSTEM FUNCTION

$$
y(t)=x(t) * h(t)
$$

Applying the convolution property

$$
\begin{aligned}
& Y(s)=X(s) H(s) \\
& H(s)=\frac{Y(s)}{X(s)}
\end{aligned}
$$

## CHARACTERIZATION OF ITI SYSTEM

- Many properties of continuous-time LTI systems can be closely associated with the characteristics of $\mathrm{H}(\mathrm{s})$ in the s-plane and in particular with the pole locations and the ROC.



## CAUSALITY

- For a causal continuous-time LTI system, we have

$$
h(t)=0 \quad t<0
$$

- Since $h(t)$ is a right-sided signal, the corresponding requirement on $\mathrm{H}(\mathrm{s})$ is that the ROC of $\mathrm{H}(\mathrm{s})$ must be of the form

$$
\operatorname{Re}(s)>\sigma_{\max }
$$

- That is, the ROC is the region in the s-plane to the right of all of the system poles.
- Similarly, if the system is anticausal, then

$$
\begin{array}{ll}
h(t)=0 & t>0 \\
\operatorname{Re}(s)<\sigma_{\min } &
\end{array}
$$

## STABILITY

- A continuous-time LTI system is BIBO stable if and only if

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|h(t)| d t<\infty \\
& H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t \quad \text { Let } s=j \omega . \text { Then } \\
& |H(j \omega)|=\left|\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t\right| \leq \int_{-\infty}^{\infty}\left|h(t) e^{-j \omega t}\right| d t \\
& =\int_{-\infty}^{\infty}|h(t)| d t<\infty
\end{aligned}
$$

- The corresponding requirement on $\mathrm{H}(\mathrm{s})$ is that the ROC of $\mathrm{H}(\mathrm{s})$ contains the $\mathrm{j} \omega$-axis (that is, $\mathrm{s}=\mathrm{j} \omega$ )


## CHUSHL AND STABLE SYSTEMS

- If the system is both causal and stable, then
- all the poles of $\mathrm{H}(\mathrm{s})$ must lie in the left half of the s-plane; that is, they all have negative real parts because the ROC is of the form

$$
\operatorname{Re}(s)>\sigma_{\max }
$$

- and since the $\mathrm{j} \omega$ axis is included in the ROC, we must have a

$$
\sigma_{\max }<0
$$

## EXAMPLES

The output $\mathrm{y}(\mathrm{t})$ of a continuous time LTI system is found to be $2 e^{-3 t} u(t)$ when the input $x(t)$ is $u(t)$

- Find the impulse response $h(t)$ of the system
- Find the output $y(t)$ when the input $x(t)$ is $e^{-t} u(t)$

Answer

$$
y(t)=\left(-e^{-t}+3 e^{-3 t}\right) u(t)
$$

- $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \quad \rightarrow \mathrm{X}(\mathrm{s})=\frac{1}{s} \quad \operatorname{Re}(\mathrm{~s})>0$
- $\mathrm{y}(\mathrm{t})=2 \mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t}) \rightarrow \mathrm{Y}(\mathrm{s})=\frac{2}{s+3} \quad \operatorname{Re}(\mathrm{~s})>-3$
- $\mathrm{H}(\mathrm{s})=\frac{Y(s)}{X(s)}=\frac{2 s}{s+3} \quad \rightarrow \mathrm{H}(\mathbf{s})=\frac{2(s+3)-6}{s+3}=2-\frac{6}{s+3}$
- $h(t)=2 \delta(t)-6 e^{-3 t} u(t)$


## EXAMPLES

- Consider a continuous time LTI system for which the input $x(t)$ and output $\mathrm{y}(\mathrm{t})$ are related by:

$$
y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)=x(t)
$$

- Find the system function $\mathrm{H}(\mathrm{s})$
- Determine the impulse response $(\mathrm{h}(\mathrm{t})$ ) for each of the following cases:
- The system is causal
- The system is stable
- The system is neither causal nor stable


## I

$$
\begin{aligned}
& y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)=x(t) \\
& s^{2} Y(s)+s Y(s)-2 Y(s)=X(s) \\
& \left(s^{2}+s-2\right) Y(s)=X(s)
\end{aligned}
$$

$$
H(s)=\frac{Y(s)}{X(s)}
$$

$$
=\frac{1}{s^{2}+s-2}=\frac{1}{(s+2)(s-1)}
$$

$$
\begin{aligned}
& \text { B } \\
& H(s)=\frac{1}{(s+2)(s-1)}=-\frac{1}{3} \frac{1}{s+2}+\frac{1}{3} \frac{1}{s-1}
\end{aligned}
$$

Causal $\quad \operatorname{ROC}$ of $H(s)$ is $\operatorname{Re}(s)>1 . \quad h(t)=-\frac{1}{3}\left(e^{-2 t}-e^{t}\right) u(t)$

Stable

$$
\text { ROC of } H(s) \text { is }-2<\operatorname{Re}(s)<1 . \quad h(t)=-\frac{1}{3} e^{-2 t} u(t)-\frac{1}{3} e^{t} u(-t)
$$

Not Causal Not Stable

$$
\operatorname{ROC} \text { of } H(s) \text { is } \operatorname{Re}(s)<-2 .
$$

$$
h(t)=\frac{1}{3} e^{-2 t} u(-t)-\frac{1}{3} e^{t} u(-t)
$$

