FOURIER TRANSFORM

FEG2D3
-INW-
2016

INTRODUCTION

- convert time-domain signals into frequency-domain (or spectral) representations.
- In 1807, Jean Baptiste Joseph Fourier submitted a paper using trigonometric series to represent "any" periodic signals
- But Lagrange rejected it!!
- In 1822, Fourier published a book "The Analytical Theory of Heat"
- He also claimed that "any" periodic signal could be represented by Fourier series.
- He however obtained a representation for aperiodic signals i.e., Fourier integral or transform
- Fourier did not actually contribute to the mathematical theory of Fourier series

FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS

PERIODIC SIGNALS

- a continuous-time signal $x(t)$ to be periodic if there is a positive nonzero value of T for which:

$$
x(t+T)=x(t) \quad \text { for all } t
$$

- The fundamental period T_{0} of $x(t)$ is the smallest positive value of T
- $f_{0}=\frac{1}{T_{0}}$ is referred to as the fundamental frequency
- Two basic examples of periodic signals are the real sinusoidal signal

$$
x(t)=\cos \left(\omega_{0} t+\phi\right)
$$

- And the complex exponential signal

$$
x(t)=e^{j \omega t}
$$

FEwhere $\omega_{0}=2 \pi / T_{0}=2 \pi f_{0}$ is called the fundamental angular frequency.

COMPLEX EXPONENTIAL FOURIER SERIES REPRESENTATION

- The complex exponential Fourier series representation of a periodic signal $x(t)$ with fundamental period T_{0} is qiven by

$$
x(t)=\sum_{k=-\infty} c_{k} e^{j k \omega_{0} t} \quad ; \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

- Where c, are known as the complex Fourier coefficients and are given by

$$
c_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t
$$

- Where $\int_{T_{0}}$ denotes the integral over any one period and 0 to To or -To/2 to T0/2 is commonly used for the integration.

COMPLEX EXPONENTIAL FOURIER SERIES REPRESENTATION

- Set k=0, then:

$$
c_{0}=\frac{1}{T_{0}} \int_{T_{0}} x(t) d t
$$

- which indicates that c_{0} equals the average value of $x(t)$ over a period.
- When $x(t)$ is real, then it follows that:

$$
C_{-k}=C_{k}^{*}
$$

- where the asterisk indicates the complex conjugate.

TRIGONOMETRIC FOURIER SERIES

- The trigonometric Fourier series representation of a periodic signal $x(t)$ with fundamental period T_{0} is given by

$$
x(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \omega_{0} t+b_{k} \sin k \omega_{0} t\right) \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

- where a_{k} and b_{k} are the Fourier coefficients given by

$$
\begin{aligned}
& a_{k}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos k \omega_{0} t d t \\
& b_{k}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin k \omega_{0} t d t
\end{aligned}
$$

EVEN AND ODD SICNALS

- If a periodic signal $x(t)$ is even, then $b_{k}=0$ and its Fourier series contains only cosine terms:

$$
x(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k \omega_{0} t \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

- If $x(t)$ is odd, then $a_{k}=0$ and its Fourier series contains only sine terms:

$$
x(t)=\sum_{k=1}^{\infty} b_{k} \sin k \omega_{0} t \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

PERSAMAAN PENTING

- Sinyal Sinusoid Kompleks
$-\mathbf{x}(\mathrm{t})=e^{j k \omega_{o} t}=\operatorname{cosk} \omega_{o} t+\mathrm{j} \sin k \omega_{o} t$
- Konjugate
$\cdot \mathrm{x} *(\mathrm{t})=e^{-j k \omega_{o} t}=\cos k \omega_{o} t-\mathrm{j} \sin k \omega_{o} t$
- Rumus Euler
$\cos k \omega_{o} t=\frac{e^{j k \omega_{o} t}+e^{-j k \omega_{o} t}}{2} \quad \sin k \omega_{o} t=\frac{e^{j k \omega_{o} t}-e^{-j k \omega_{o} t}}{2 j}$

Tentukan koefisien DF untuk sinyal $\mathrm{x}(\mathrm{t})$

Perioda $\mathrm{x}(\mathrm{t})$ adalah $\mathrm{T}=2, \omega_{o}=\frac{2 \pi}{T}=\frac{2 \pi}{2}=\pi$
$\mathrm{x}(\mathrm{t})=e^{-2 t}, 0 \leq t \leq 2 \quad ; \mathrm{x}(\mathrm{t})=\frac{1}{T} \int_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{x}(\boldsymbol{t}) \boldsymbol{e}^{-j k \omega_{0} t} d t$
$\mathrm{x}(\mathrm{t})=\frac{1}{2} \int_{\mathbf{0}}^{2} e^{-2 t} e^{-j \boldsymbol{k} \omega_{o} t} \boldsymbol{d} \boldsymbol{t}$

$$
\begin{aligned}
& \mathrm{X}[\mathrm{k}]=\frac{1}{2} \int_{0}^{2} e^{-2 t} \boldsymbol{e}^{-j k \pi t} \boldsymbol{d t} \\
& \mathrm{X}[\mathrm{k}]=\frac{\mathbf{1}}{2} \int_{0}^{2} e^{-(2+j k \pi) t} \boldsymbol{d} \boldsymbol{t} \\
& \mathrm{X}[\mathrm{k}]=\left.\frac{-1}{2(2+j k \pi)} e^{-(2+j k \pi) t}\right|_{0} ^{2} \\
& \mathrm{X}[\mathrm{k}]=\frac{-1}{4+j k 2 \pi}\left(e^{-(2+j k \pi) 2}-e^{-(2+j k \pi) 0}\right) \\
& \mathrm{X}[\mathrm{k}]=\frac{-1}{4+j k 2 \pi}\left(e^{-(2+j k \pi) 2}-e^{0}\right) \\
& \mathrm{X}[\mathrm{k}]=\frac{-1}{4+j k 2 \pi}\left(e^{-4-2 j k \pi}-1\right) \\
& \mathrm{X}[\mathrm{k}]=\frac{-1}{4+j k 2 \pi}\left(e^{-4} e^{-2 \boldsymbol{j} k \pi}-1\right) \\
& \mathrm{X}[\mathrm{k}]=\frac{-1}{4+j k 2 \pi}\left(e^{-4}(1)-1\right) \\
&
\end{aligned}
$$

Tentukan representasi Deret Fourier Sinyal :
$\mathrm{x}(\mathrm{t})=3 \cos \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)$ memakai metoda inspeksi.
$\omega_{o}=\frac{\pi}{2}, \quad \mathrm{~T}=\frac{2 \pi}{\omega_{o}}=\frac{2 \pi}{\frac{\pi}{2}}=4$ (Perioda fundamental/Perioda Dasar)
$\mathrm{x}(\mathrm{t})=3 \cos \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)=3 \frac{e^{j\left(\frac{\pi}{2} t+\frac{\pi}{4}\right)}+e^{-j\left(\frac{\pi}{2} t+\frac{\pi}{4}\right)}}{2}$
$\mathbf{x}(\mathrm{t})=\frac{3}{2} e^{j \frac{\pi}{4}} e^{j \frac{\pi}{2} t}+\frac{3}{2} e^{-j \frac{\pi}{4}} e^{-j \frac{\pi}{2} t} \quad$ Malka $\mathbf{X}[\mathbf{k}]=\left\{\begin{array}{c}\frac{3}{2} e^{-j \frac{\pi}{4}, \text { untuk } \boldsymbol{k}=-1} \\ \frac{3}{2} e^{j \frac{\pi}{4}}, \text { untuk } \boldsymbol{k}=\mathbf{1} \\ 0, \text { nilai lain }\end{array}\right.$

$$
\mathrm{x}(\mathrm{t})=\sum_{k=-\sim}^{\sim} \mathrm{X}[\mathrm{k}] \boldsymbol{e}^{j k \omega_{o} t}
$$

DF Gelombang Segi-Empat (1)

- Tentukan representasi DF gelombang segi-empat:

- Solusi: Perioda adalah T, dimana $\omega_{0}=\frac{2 \pi}{T}$.
* Karena sinyal $x(t)$ simetri genap, maka perhitungan:

$$
X[k]=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t
$$

- Integrasi dilakukan pada selang: $-\frac{T}{2} \leq t \leq \frac{T}{2}$.

$$
X[k]=\frac{1}{T} \int_{-T_{0}}^{T_{0}} e^{-j k \omega_{0} t} d t=\left.\frac{-1}{T j k \omega_{0}} e^{-j k \omega_{0} t}\right|_{-T_{0^{\prime}}} ^{T_{0}} \quad k \neq 0
$$

DF Gelombang Segi-Empat (2)

- $X[k]=\frac{2}{T k \omega_{0}}\left(\frac{e^{j k \omega_{0} T_{0}}-e^{-j k \omega_{0} T_{0}}}{2 j}\right), \quad k \neq 0$.
$X[k]=\frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}}, \quad k \neq 0$.
Untuk $k=0$:

$$
X[0]=\frac{1}{T} \int_{-T_{0}}^{T_{0}} d t=\frac{2 T_{0}}{T}
$$

Memakai aturan L'Hopital's: $\lim _{k \rightarrow 0} \frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}}=\frac{2 T_{0}}{T}$.

- $X[k]$ nilainya riil, dengan memakai $\omega_{0}=\frac{2 \pi}{T}$

Diperoleh:

$$
X[k]=\frac{2 \sin \left(k \frac{2 \pi}{T} T_{0}\right)}{k 2 \pi}
$$

CONTOH

- Tentukan deret Fourier dari bentuk gelombang periodik berikut ini

- Ekspresi deret Fourier diberikan berikut ini

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- Tujuan kita adalah mendapatkan koefisien deret a_{0}, a_{n}, dan b_{n}
- Dari gambar diperoleh
- T=2
- $\omega_{0}=2 \pi / T=\pi$

$$
\begin{aligned}
a_{0} & =\frac{1}{T} \int_{0}^{T} f(t) d t=\frac{1}{2}\left[\int_{0}^{1} 1 d t+\int_{1}^{2} 0 d t\right]=\left.\frac{1}{2} t\right|_{0} ^{1}=\frac{1}{2} \\
a_{n} & =\frac{2}{T} \int_{0}^{T} f(t) \cos n \omega_{0} t d t \\
& =\frac{2}{2}\left[\int_{0}^{1} 1 \cos n \pi t d t+\int_{1}^{2} 0 \cos n \pi t d t\right] \\
& =\left.\frac{1}{n \pi} \sin n \pi t\right|_{0} ^{1}=\frac{1}{n \pi} \sin n \pi=0
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{2}{T} \int_{0}^{T} f(t) \sin n \omega_{0} t d t \\
& =\frac{2}{2}\left[\int_{0}^{1} 1 \sin n \pi t d t+\int_{1}^{2} 0 \sin n \pi t d t\right] \\
& =-\left.\frac{1}{n \pi} \cos n \pi t\right|_{0} ^{1} \\
& =-\frac{1}{n \pi}(\cos n \pi-1), \quad \cos n \pi=(-1)^{n} \\
& =\frac{1}{n \pi}\left[1-(-1)^{n}\right]= \begin{cases}\frac{2}{n \pi}, & n=\text { odd } \\
0, & n=\text { even }\end{cases}
\end{aligned}
$$

- Dengan mensubtitusikan koefisien diperoleh:

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sin \pi t+\frac{2}{3 \pi} \sin 3 \pi t+\frac{2}{5 \pi} \sin 5 \pi t+\cdots
$$

- Dapat diringkas sebagai:

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{n} \sin n \pi t, \quad n=2 k-1
$$

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- Jika sinyal periodik tersebut diketahui simetrik genap

$$
f(t)=f(-t)
$$

- maka diperoleh

$$
\begin{aligned}
& a_{0}=\frac{2}{T} \int_{0}^{T / 2} f(t) d t \\
& a_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos n \omega_{0} t d t \\
& b_{n}=0
\end{aligned}
$$

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

PERTIMBANGAN SIMETRI (2)

- Jika sinyal periodik tersebut diketahui simetrik ganjil

$$
f(-t)=-f(t)
$$

- maka diperoleh

(a)

$$
a_{0}=0, \quad a_{n}=0
$$

$$
b_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin n \omega_{0} t d t
$$

(c)

(b)

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

PERTIMBANGAN SIMETRI (3)

- Jika sinyal periodik tersehit diketahui simetrik ganjil setengah gelombang $f\left(t-\frac{T}{2}\right)=-f(t)$ maka diperoleh

$$
\begin{aligned}
& a_{0}=0 \\
& a_{n}= \begin{cases}\frac{4}{T} \int_{0}^{T / 2} f(t) \cos n \omega_{0} t d t, & \text { for } n \text { odd } \\
0, & \text { for } n \text { even }\end{cases} \\
& b_{n}= \begin{cases}\frac{4}{T} \int_{0}^{T / 2} f(t) \sin n \omega_{0} t d t, & \text { for } n \text { odd } \\
0, & \text { for } n \text { even }\end{cases}
\end{aligned}
$$

THE FOURIER TRANSFORM

FROM FOURIER SERIES TO FOURIER TRANSFORM

- Let $x(t)$ be a nonperiodic signal of finite duration, that is,

$$
x(t)=0 ;|t|>T_{1}
$$

- Such a signal is shown below . Let $\mathrm{x}_{\mathrm{T} 0}(\mathrm{t})$ be a periodic signal formed by repeating $x(r)$ with fundamental period T,

(b)

FROM FOURIER SERIES TO FOURIER TRANSFORM

- If we let $T_{0} \rightarrow \infty$

$$
\lim _{T_{0} \rightarrow \infty} x_{T_{11}}(t)=x(t)
$$

- The complex exponential Fourier series of $x_{T_{0}}(t)$ is given by

$$
x_{T_{1}}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{01} t} \quad \omega_{0}=\frac{2 \pi}{T_{0}} \quad \text { wher } \quad c_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x_{T_{0}}(t) e^{-j k \omega_{01} t} d t
$$

FROM FOURIER SERIES TO FOURIER TRANSFORM

- Since $\mathrm{x}_{\mathrm{T}_{0}}(\mathrm{t})=\mathrm{x}(\mathrm{t})$ for $|\mathrm{t}|<\mathrm{T}_{0} / 2$ and also since $\mathrm{x}(\mathrm{t})=0$ outside this interval

$$
c_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T_{0}} \int_{-\infty}^{\infty} x(t) e^{-j k \omega_{0} t} d t
$$

- Let us define $X(\omega)$ as

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

FROM FOURIER SERIES TO FOURIER TRANSFORM

- the complex Fourier coefficients c_{k} can be expressed as

$$
\begin{gathered}
c_{k}=\frac{1}{T_{0}} X\left(k \omega_{0}\right) \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{gathered}
$$

FOURIER TRANSFORM PAIR $x(t) \leftrightarrow X(\omega)$

- The function $X(\omega)$ is called the Fourier transform of $x(t)$

$$
X(\omega)=\mathscr{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

- While the invers Fourier Transform is

$$
x(t)=\mathscr{F}^{-1}\{X(\omega)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM

1. Linearity

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t) \longleftrightarrow a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)
$$

2. Time Shifting

$$
x\left(t-t_{0}\right) \longleftrightarrow e^{-j \omega t_{0}} X(\omega)
$$

the effect of a shift in the time domain is simply to add a linear term $-\omega \mathrm{t}_{0}$, to the original phase spectrum $\theta(\omega)$. This is known as a linear phase shift of the Fourier transform $X(\omega)$

3. Frequency Shifting

The multiplication of $\mathrm{x}(\mathrm{t})$ by a complex exponential signal $e^{j \omega_{0} t}$ is sometimes called complex modulation. Thus, Equation below shows that complex modulation in the time domain corresponds to a shift of $X(\omega)$ in the frequency domain.

$$
\underset{\left.e^{j \omega_{0} t} x(t) \longleftrightarrow X\left(\omega-\omega_{0}\right)\right) ~}{\left.e^{2}\right)}
$$

4. Time Scaling

$$
x(a t) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)
$$

- where a is a real constant.
- This equation indicates that scaling the time variable t by the factor a causes an inverse scaling of the frequency variable ω by $\frac{1}{a}$
- as well as an amplitude scaling of $X\left(\frac{\omega}{a}\right)$ by $\frac{1}{a}$ (. Thus, the scaling property implies that time compression of a signal ($a>1$) results in its spectral expansion and that time expansion of the signal ($a<1$) results in its spectral compression.

5. Time Reversal
time reversal of $\mathbf{x}(\mathrm{t})$ produces a like reversal of the frequency axis for $X(\omega)$. Equation below is readily obtained by setting $a=-1$

$$
x(-t) \leftrightarrow X(-\omega)
$$

6. Duality or symmetry

$$
X(t) \leftrightarrow 2 \pi x(-\omega)
$$

7. Differentiation in the Time Domain

$$
\frac{d x(t)}{d t} \leftrightarrow j \omega X(\omega)
$$

8. Differentiation in the Frequency Domain
$(-j t) x(t) \leftrightarrow \frac{d X(\omega)}{d \omega}$
9. Integration in the time domain

$$
\int_{-\infty}^{l} x(\tau) d \tau \longleftrightarrow \pi X(0) \delta(\omega)+\frac{1}{j \omega} X(\omega)
$$

10. Convolution

$$
x_{1}(t) * x_{2}(t) \longleftrightarrow X_{1}(\omega) X_{2}(\omega)
$$

11. Multiplication

$$
x_{1}(t) x_{2}(t) \leftrightarrow \frac{1}{2 \pi} X_{1}(\omega) * X_{2}(\omega)
$$

COMMON FOURIER TRANSFORM PHIRS

$x(t)$	$X(\omega)$	$x(t)$	$X(\omega)$
$\delta(t)$	1	$e^{-j \omega t_{0}}$	
$\delta\left(t-t_{0}\right)$	$2 \pi \delta(\omega)$	$u(-t)$	$\pi \delta(\omega)-\frac{1}{j \omega}$
1	$2 \pi \delta\left(\omega-\omega_{0}\right)$		$\frac{1}{j \omega+a}$
$e^{j \omega_{0} t}$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$		
$\cos \omega_{0} t$	$-j \pi\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$		
$\sin \omega_{0} t$	$\pi \delta(\omega)+\frac{1}{j \omega}$	$t e^{-a t} u(t), a>0$	
$u(t)$		$e^{-a\|t\|}, a>0$	$\frac{1}{(j \omega+a)^{2}}$
			$\frac{2 a}{a^{2}+\omega^{2}}$

COMMON FOURIER TRANSFORM PAIRS

$$
\begin{aligned}
& \begin{array}{ccc}
\hline x(t) & X(\omega) \\
\frac{1}{a^{2}+t^{2}} & e^{-a|\omega|} & X(\omega) \\
e^{-a t^{2}}, a>0 & \sqrt{\frac{\pi}{a}} e^{-\omega^{2} / 4 a} & \frac{\sin a t}{\pi t} \\
p_{a}(t)=\left\{\begin{array}{lll}
1 & |t|<a \\
0 & |t|>a & 2 a \frac{\sin \omega a}{\omega a}
\end{array} \frac{p_{a}(\omega)= \begin{cases}1 & |\omega|<a \\
0 & |\omega|>a\end{cases} }{} \begin{array}{l}
\frac{\operatorname{sgn} t}{j \omega}
\end{array}\right.
\end{array} \\
& \sum_{k=-\infty}^{\infty} \delta(t-k T) \quad \omega_{0} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \omega_{0}\right), \omega_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

Property

Property	Signal	Fourier transform
	$x(t)$	$X(\omega)$
	$x_{1}(t)$	$X_{1}(\omega)$
	$x_{2}(t)$	$X_{2}(\omega)$
Linearity	$a_{1} x_{1}(t)+a_{2} x_{2}(t)$	$a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)$
Time shifting	$x\left(t-t_{0}\right)$	$e^{-j \omega t_{0}} X(\omega)$
Frequency shifting	$e^{j \omega_{0} t} x(t)$	$X\left(\omega-\omega_{0}\right)$
Time scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$
Time reversal	$x(-t)$	$X(-\omega)$
Duality	$X(t)$	$2 \pi x(-\omega)$
Time differentiation	$\frac{d x(t)}{d t}$	$j \omega X(\omega)$
Frequency differentiation	$(-j t) x(t)$	$\frac{d X(\omega)}{d \omega}$
Integration	$\int_{-\infty}^{t} x(\tau) d \tau$	$\pi X(0) \delta(\omega)+\frac{1}{j \omega} X(\omega)$
Convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(\omega) X_{2}(\omega)$
Multiplication	$x_{1}(t) x_{2}(t)$	$\frac{1}{2 \pi} X_{1}(\omega) * X_{2}(\omega)$
Real signal	$x(t)=x_{e}(t)+x_{o}(t)$	$\begin{gathered} X(\omega)=A(\omega)+j B(\omega) \\ X(-\omega)=X^{*}(\omega) \end{gathered}$
Even component	$x_{e}(t)$	$\operatorname{Re}\{X(\omega)\}=A(\omega)$
Odd component	$x_{o}(t)$	$j \operatorname{Im}(X(\omega)\}=j B(\omega)$
Parseval's relations		

$$
\begin{array}{r}
\int_{-\infty}^{\infty} x_{1}(\lambda) X_{2}(\lambda) d \lambda=\int_{-\infty}^{\infty} X_{1}(\lambda) x_{2}(\lambda) d \lambda \\
\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{1}(\omega) X_{2}(-\omega) d \omega \\
\text { FEG2D3 - INW } \quad \int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega
\end{array}
$$

$x(t)$	$X(\omega)$
$\delta(t)$	1
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$
1	$2 \pi \delta(\omega)$
$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
$\sin \omega_{0} t$	$-j \pi\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$
$u(t)$	$\pi \delta(\omega)+\frac{1}{j \omega}$
$u(-t)$	$\pi \delta(\omega)-\frac{1}{j \omega}$
$e^{-a t} u(t), a>0$	$\frac{1}{j \omega+a}$
$t e^{-a t} u(t), a>0$	$\frac{1}{(j \omega+a)^{2}}$
$e^{-a\|t\|}, a>0$	$\frac{2 a}{a^{2}+\omega^{2}}$
$\frac{1}{a^{2}+t^{2}}$	$e^{-a\|\omega\|}$
$e^{-a t^{2}}, a>0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^{2} / 4 a}$
$p_{a}(t)= \begin{cases}1 & \|t\|<a \\ 0 & \|t\|>a\end{cases}$	$2 a \frac{\sin \omega a}{\omega a}$
$\frac{\sin a t}{\pi t}$	$p_{a}(\omega)= \begin{cases}1 & \|\omega\|<a \\ 0 & \|\omega\|>a\end{cases}$
$\operatorname{sgn} t$	$\frac{2}{j \omega}$

FREQUENCY RESPONSE

- The output $y(t)$ of a continuous-time LTI system equals the convolution of the input $x(t)$ with the impulse response $h(t)$

$$
y(t)=x(t) * h(t)
$$

- Applying the convolution property, we obtain:

$$
Y(\omega)=X(\omega) H(\omega)
$$

- Relationships between inputs and outputs in an LTI system shown by:

FREQUENCY RESPONSE

- Where $Y(\omega), X(\omega)$ and $H(\omega)$ are the Fourier transforms of $y(t), x(t)$ and $h(t)$, respectively we have

$$
H(\omega)=\frac{Y(\omega)}{X(\omega)}
$$

- The function $H(\omega)$ is called the frequency response of the system.
- Let $H(\omega)=|H(\omega)| e^{j \theta_{H}(\omega)}$
- Then $|H(\omega)|$ is called the magnitude response of the system
- And $\theta_{H}(\omega)$ is called the phase response of the system

$$
\theta_{H}(\omega)=\tan ^{-1} \omega
$$

FREOUENCY RESPONSE

A system described by:

$$
y^{\prime}(t)+2 y(t)=x(t)+x^{\prime}(t)
$$

Find the impulse response $h(t)$ of the system
Answer
$j \omega Y(\omega)+2 Y(\omega)=X(\omega)+j \omega X(\omega)$
$\operatorname{Or}(j \omega+2) Y(\omega)=(1+j \omega) X(\omega)$
$H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{1+j \omega}{2+j \omega}=\frac{2+j \omega-1}{2+j \omega}=1-\frac{1}{2+j \omega}$
Inverse Fourier Transform of $H(\omega)$, the impulse response $h(t)$ is
$h(t)=\delta(t)-e^{-2 t} u(t)$
$\frac{d y(t)}{d x}+2 y(t)=x(t)$
Find the output $y(t)$ if $x(t)=e^{-1} u(t)$
Answer:
$j \omega Y(\omega)+2 Y(\omega)=X(\omega)$
$H(\omega)=\frac{Y(\omega)}{X(\omega}=\frac{1}{2+j \omega}$
$e^{-1} u(t) \quad \leftrightarrow \quad \frac{1}{1+j \omega}$
$Y(\omega)=\mathrm{X}(\omega) \mathrm{H}(\omega)=\frac{1}{(1+j \omega)(2+j \omega)}=\frac{1}{1+j \omega}-\frac{1}{2+j \omega} \leftrightarrow y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM $x[n] \leftrightarrow X(\Omega)$

$$
\begin{aligned}
& X(\Omega)=\mathscr{F}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \\
& x[n]=\mathscr{F}^{-1}\{X(\Omega)\}=\frac{1}{2 \pi} \int_{2 \pi} X(\Omega) e^{j \Omega n} d \Omega
\end{aligned}
$$

Table 6-1. Properties of the Fourier Transform

Property	Sequence	Fourier transform
	$x[n]$	$X(\Omega)$
	$x_{1}[n]$	$X_{1}(\Omega)$
	$x_{2}[n]$	$X_{2}(\Omega)$
Periodicity	$x[n]$	$X(\Omega+2 \pi)=X(\Omega)$
Linearity	$a_{1} x_{1}[n]+a_{2} x_{2}[n]$	$a_{1} X_{1}(\Omega)+a_{2} X_{2}(\Omega)$
Time shifting	$x\left[n-n_{0}\right]$	$e^{-j \Omega n_{0}} X(\Omega)$
Frequency shifting	$e^{j \Omega_{0} n} x[n]$	$X\left(\Omega-\Omega_{0}\right)$
Conjugation	$x^{*}[n]$	$X^{*}(-\Omega)$
Time reversal	$x[-n]$	$X(-\Omega)$
Time scaling	$x_{(m)}[n]=\left\{\begin{array}{cc} x[n / m] & \text { if } n=k m \\ 0 & \text { if } n \neq k m \end{array}\right.$	$X(m \Omega)$
Frequency differentiation	$n \times[n]$	$j \frac{d X(\Omega)}{d \Omega}$
First difference	$x[n]-x[n-1]$	$\left(1-e^{-j \Omega}\right) X(\Omega)$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\pi X(0) \delta(\Omega)+\frac{1}{1-e^{-j \Omega}} X(\Omega)$
		$\|\Omega\| \leq \pi$
Convolution	$x_{1}[n] * x_{2}[n]$	$X_{1}(\Omega) X_{2}(\Omega)$
Multiplication	$x_{1}[n] x_{2}[n]$	$\frac{1}{2 \pi} X_{1}(\Omega) \otimes X_{2}(\Omega)$
Real sequence	$x[n]=x_{e}[n]+x_{o}[n]$	$X(\Omega)=A(\Omega)+j B(\Omega)$
		$X(-\Omega)=X^{*}(\Omega)$
Even component	$x_{e}[n]$	$\operatorname{Re}\{X(\Omega)\}=A(\Omega)$
Odd component	$x_{0}[n]$	$j \operatorname{lm}\{X(\Omega)\}=j B(\Omega)$
Parseval's relations		
$\sum_{n=-\infty}^{\infty}\|x[n]\|^{2}=\frac{1}{2 \pi} \int_{2 \pi}\|X(\Omega)\|^{2} d \Omega$		

FREOUENCY RESPONSE

- $y[n]=x[n] * h[n] \leftrightarrow Y(\Omega)=X(\Omega) H(\Omega)$
- $H(\Omega)=\frac{Y(\Omega)}{X(\Omega)} \quad \rightarrow \quad H(\Omega)=|H(\Omega)| e^{-j \theta_{H}(\Omega)}$
- The relationship is figured by:

As in the continuous-time case, the function $H(\Omega)$ is called the frequency response of the system. $|\mathrm{H}(\Omega)|$ the magnitude response and $\theta_{H}(\Omega)$ is the phase response

- A causal discrete time LTI system is described by:

$$
y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=x[n]
$$

a. Determine the frequency response $H(\Omega)$
b. Find the impulse response $h[n]$

$$
\begin{aligned}
& Y(\Omega)-\frac{3}{4} e^{-j \Omega} Y(\Omega)+\frac{1}{8} e^{-j 2 \Omega} Y(\Omega)=X(\Omega) \\
& \left(1-\frac{3}{4} e^{-j \Omega}+\frac{1}{8} e^{-j 2 \Omega}\right) Y(\Omega)=X(\Omega)
\end{aligned}
$$

$$
H(\Omega)=\frac{1}{\left(1-\frac{1}{2} e^{-j \Omega}\right)\left(1-\frac{1}{4} e^{-j \Omega}\right)} \leftrightarrow \frac{2}{\left(1-\frac{1}{2} e^{-j \Omega}\right)}-\frac{1}{\left(1-\frac{1}{4} e^{-j \Omega}\right)} h[n]=\left[2\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right] u[n]
$$

- $y[n]-\frac{1}{2} y[n-1]=x[n]+\frac{1}{2} x[n-1]$
- Determine $H(\Omega), h[n]$
$Y(\Omega)-\frac{1}{2} e^{-j \Omega} Y(\Omega)=X(\Omega)+\frac{1}{2} e^{-j \Omega} X(\Omega)$
$H(\Omega)=\frac{1+\frac{1}{2} e^{-j \Omega}}{1-\frac{1}{2} e^{-j \Omega}}=\frac{1}{1-\frac{1}{2} e^{-j \Omega}}+\frac{1}{2} \frac{e^{-j \Omega}}{1-\frac{1}{2} e^{-j \Omega}}$

$$
h[n]=\left(\frac{1}{2}\right)^{n} u[n]+\frac{1}{2}\left(\frac{1}{2}\right)^{n-1} u[n-1]
$$

(a) Find the frequency response $H(\Omega)$ of the system.
(b) Find the impulse response $h[n]$ of the system.
(c) Sketch the magnitude response $|H(\Omega)|$ and the phase response $\theta(\Omega)$.

$$
\begin{array}{rlrl}
y[n] & =x[n]+x[n-1] & h[n]=\delta[n]+\delta[n-1] & |H(\Omega)|=2 \cos \left(\frac{\Omega}{2}\right) \\
H(\Omega) & =\frac{Y(\Omega)}{X(\Omega)} & \theta(\Omega)=-\frac{\Omega}{2} \\
& =1+e^{-j \Omega} & \\
& =e^{-j \Omega / 2}\left(e^{j \Omega / 2}+e^{-j \Omega / 2}\right) & \\
& =2 e^{-j \Omega / 2} \cos \left(\frac{\Omega}{2}\right) &
\end{array}
$$

PLOT

