SIGNALS AND SYSTEM

FEG2D3
 -INW-

INTRODUCTION

- The concept and theory of signals and systems are needed in almost all electrical engineering fields and in many other engineering and scientific disciplines as well.
- In this chapter we introduce the mathematical description and representation of signals and systems and their classifications.
- We also define several important basic signals essential to our studies.

SIGNHLS AND
 CLASSIFICATION OF SIGNALS

SIGNALS

- A signal is a function representing a physical quantity or variable, and typically it contains information about the behavior or nature of the phenomenon.
- For instance, in a RC circuit the signal may represent the voltage across the capacitor or the current flowing in the resistor.
- Mathematically, a signal is represented as a function of an independent variable t. Usually t represents time.
- Thus, a signal is denoted by $\mathbf{x}(t)$

A. CONTINUOUS TIME SICNALS

- $\mathrm{x}(\mathrm{t})$ is a continuous-time signal if t is a continuous variable.

(a)

B. DISCRETE TIME SIGNALS

$\mathrm{E}(\mathrm{t}) \quad \rightarrow$ if t is a discrete variable, $\mathrm{x}(\mathrm{t})$ is defined at discrete times

- Then, $\mathrm{x}(\mathrm{t})$ is a discrete-time signal
- Discrete time signals is defined at discrete times
- Often identified as a sequence of numbers
- Denoted by:

$$
\left\{\mathbf{x}_{\mathrm{n}}\right\} \text { or } \mathbf{x}[\mathrm{n}] \text {, where } \mathrm{n}=\text { integer }
$$

B. DISCRETE TIME SIGNALS

(b)

B. DISCRETE TIME SIGNALS

- x [n] may represent a phenomenon for which the independent variable is inherently discrete
- $x[n]$ may be obtained by sampling a continuous time signal $x(t)$ such as:

$$
\begin{gathered}
x\left(t_{0}\right), x\left(t_{1}\right), \ldots, x\left(t_{n}\right), \ldots \\
\text { Or in a shorter form as } \\
x[0], x[1], \ldots, x[n], \ldots \\
\text { Or } \\
x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots \\
\text { So... } \\
x_{n}=x[n]=x\left(t_{n}\right)
\end{gathered}
$$

B. DISCRETE TIME SIGNALS

- x_{n} 's are called samples and the time interval between them is called the sampling interval.
- When the sampling intervals are equal / uniform sampling, then

$$
\mathrm{x}_{\mathrm{n}}=\mathrm{x}[\mathrm{n}]=\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right),
$$

where the constant T, is the sampling interval

B. DISCRETE TIME SIGNALS

A discrete-time signal $x[n]$ can be defined in two ways:

1. We can specify a rule for calculating the nth value of the sequence. For example:

$$
\begin{aligned}
x[n] & =x_{n}= \begin{cases}\left(\frac{1}{2}\right)^{n} & n \geq 0 \\
0 & n<0\end{cases} \\
\left\{x_{n}\right\} & =\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots,\left(\frac{1}{2}\right)^{n}, \ldots\right\}
\end{aligned}
$$

2. We can also explicitly list the values of the sequence. For example, the sequence shown in (b) can be written as

$$
\begin{gathered}
\left\{x_{n}\right\}=\{\ldots, 0,0,1,2,2,1,0,1,0,2,0,0, \ldots\} \\
\left\{x_{n}\right\}=\{1,2,2,1,0,1,0,2\} \\
\uparrow
\end{gathered}
$$

B. DISCRETE TIME SIGNALS

$$
\begin{gathered}
\left\{x_{n}\right\}=\{\ldots, 0,0,1,2,2,1,0,1,0,2,0,0, \ldots\} \\
\left.\uparrow x_{n}\right\}=\{1,2,2,1,0,1,0,2\}
\end{gathered}
$$

- We use the arrow to denote the $\mathrm{n}=0$ term.
- We shall use the convention that if no arrow is indicated, then the first term corresponds to $n=0$ and all the values of the sequence are zero for $n<0$.
- The sum and product of two sequences are defined as follows

$$
\begin{array}{ll}
\left\{c_{n}\right\}=\left\{a_{n}\right\}+\left\{b_{n}\right\} \rightarrow c_{n}=a_{n}+b_{n} \\
\left\{c_{n}\right\}=\left\{a_{n}\right\}\left\{b_{n}\right\} & \rightarrow c_{n}=a_{n} b_{n} \\
\left\{c_{n}\right\}=\alpha\left\{a_{n}\right\} & \rightarrow c_{n}=\alpha a_{n} \quad \alpha=\mathrm{constant}
\end{array}
$$

C. ANALOG AND DIGITAL SIGNALS

- If a continuous-time signal $x(t)$ can take on any value in the continuous interval (a, b), where a may be $-\infty$ and b may be $+\infty$, then the continuous-time signal $x(t)$ is called an analog signal.
- If a discrete-time signal $\mathrm{x}[\mathrm{n}]$ can take on only a finite number of distinct values, then we call this signal a digital signal.

D. REAL AND COMPLEX SIGNALS

- A signal $\mathrm{x}(\mathrm{t})$ is a real signal if its value is a real number, and a signal $\mathrm{x}(\mathrm{t})$ is a complex signal if its value is a complex number.
- A general complex signal $x(t)$ is a function of the form

$$
x(t)=x_{1}(t)+j x_{2}(t)
$$

Where $x_{1}(t)$ and $x_{2}(t)$ are real signals and $j=\sqrt{-1}$

* Note that t represents either a continuous or a discrete variable.

E. DETERMINISTIC AND RANDOM SIGNALS

- Deterministic signals are those signals whose values are completely specified for any given time.
- Thus, a deterministic signal can be modeled by a known function of time t.
- Random signals are those signals that take random values at any given time and must be characterized statistically.
- Random signals will not be discussed in this text.

F. EVEN AND ODD SIGNALS

- A signal $\mathrm{x}(\mathrm{t})$ or $\mathrm{x}[\mathrm{n}]$ is referred to as an even signal if:

$$
\begin{aligned}
& x(-t)=x(t) \\
& x[-n]=x[n]
\end{aligned}
$$

- A signal $\mathrm{x}(\mathrm{t})$ or $\mathrm{x}[\mathrm{n}]$ is referred to as an odd signal if:

$$
\begin{aligned}
& x(-t)=-x(t) \\
& x[-n]=-x[n]
\end{aligned}
$$

F. EVEN AND ODD SIGNALS

FEG2D3 - INW -

F. EVEN AND ODD SIGNALS

- Any signal $x(t)$ or $x[n]$ can be expressed as a sum of two signals, one of which is even and one of which is odd.

$$
\begin{gathered}
x(t)=x_{e}(t)+x_{0}(t) \\
x[n]=x_{e}[n]+x_{0}[n] \\
\text { Where: } \\
x_{e}(t)=\frac{1}{2}\{x(t)+x(-t)\} \text { even part of } \mathrm{x}(\mathrm{t}) \\
x_{e}[n]=\frac{1}{2}\{x[n]+x[-n]\} \text { even part of } \mathrm{x}[\mathrm{n}] \\
x_{o}(t)=\frac{1}{2}\{x(t)-x(-t)\} \text { odd part of } \mathrm{x}(\mathrm{t}) \\
x_{o}[n]=\frac{1}{2}\{x[n]-x[-n]\} \text { odd part of } \mathrm{x}[\mathrm{n}]
\end{gathered}
$$

- the product of two even signals or of two odd signals is an even signal
- that the product of an even signal and an odd signal is an odd signal

E. PERIODIC AND NON PERIODIC SIGNALS

- A continuous-time signal $x(t)$ is said to be periodic with period T if there is a positive nonzero value of T for which

$$
x(t+T)=x(t) \text { all } t
$$

$$
x(t+m T)=x(t) \text { all } t \text { and any integer } m
$$

H. ENERGY \& POWER SIGNALS

- Consider $v(t)$ to be the voltage across a resistor R producing a current $i(t)$. The instantaneous power $p(t)$ per ohm is defined as:

$$
p(t)=\frac{v(t) i(t)}{R}=i^{2}(t)
$$

- Total energy E and average power P on a per-ohm basis are:

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty} i^{2}(t) d t \text { joules } \\
P & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} i^{2}(t) d t \text { watts }
\end{aligned}
$$

H. ENERGY \& POWER SIGNALS

- For an arbitrary continuous-time signal $x(t)$, the normalized energy content E of $x(t)$ and $x[n]$ are defined as

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t \quad E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- Normalized average power P of $x(t)$ and $x[n]$ are defined as:

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t \quad P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}
$$

BASIC CONTINUOUS TIME SICNALS

A. UNIT STEP FUNCTION

- The unit step function $u(t)$, also known as the Heaviside unit function, is defined as:

$$
u(t)=\left\{\begin{array}{ll}
1 & t>0 \\
0 & t<0
\end{array} \quad u\left(t-t_{0}\right)= \begin{cases}1 & t>t_{0} \\
0 & t<t_{0}\end{cases}\right.
$$

B. UNIT IMIPULSE FUNCTION/IMPULS SIGNAL

- The unit impulse function $\delta(t)$, also known as the Dirac delta function, plays a central role in system analysis.
- Traditionally, $\delta(t)$ is often defined as the limit of a suitably chosen conventional function having unity area over an infinitesimal time interval as shown below:

$$
\begin{gathered}
\delta(t)= \begin{cases}0 & t \neq 0 \\
\infty & t=0\end{cases} \\
\int_{-\varepsilon}^{\varepsilon} \delta(t) d t=1
\end{gathered}
$$

B. UNIT IMPULSE FUNCTION/IMPULS SIGNAL

C. COMPLEX EXPONENTIAL SIGNALS

- The complex exponential signal $x(t)=e^{j \omega 0 t}$ is an important example of a complex signal

1. Exponentially Increasing sinusoidal signal
2. Exponentially decreasing sinusoidal signal

C. COMPLEX EXPONENTIAL SIGNALS

- By using Euler's formula......

$$
x(t)=e^{j \omega 0 t}=\cos \omega_{0} t+j \sin \omega_{0} t
$$

- $\mathrm{X}(\mathrm{t})$ is a complex signals, whose real part is $\cos \omega_{0} t$ and imaginary part is $j \sin \omega_{0} t$
- The fundamental period T_{0} of $\mathrm{x}(\mathrm{t})$ is given by:

$$
T_{0}=\frac{2 \pi}{\omega_{0}}
$$

GENERAL COMPLEX EXPONENTIAL SIGNALS

- Lets $\mathrm{s}=\sigma+j \omega$ be a complex number. We define $x(t)$ as:

$$
x(t)=e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t}(\cos \omega t+j \sin \omega t)
$$

- Then signal $x(t)$ is known as a general complex exponential signal whose real part $e^{\sigma t} \cos \omega t$ and imaginary part $e^{\sigma t} \sin \omega t$ are exponentially increasing $(\sigma>0)$ or decreasing $(\sigma<0)$ sinusoidal signals

REAL EXPONENTIAL SIGNALS

- Note that if $s=\sigma$ (a real number) *reduce a real exponential signal

Continuous-time real exponential signals $\sigma>0 \& \sigma<0$ (growing exp \& decaying exp)

D. SINUSOIDAL SIGNAL

- A continuous-time sinusoidal signal can be expressed as

$$
x(t)=A \cos \left(\omega_{0} t+\theta\right)
$$

- A is the amplitude (real),
- ω is the radian frequency in radians per second, and
- θ is the phase angle in radians
- Period: $\quad T_{0}=\frac{2 \pi}{\omega_{0}}$
- Fundamental frequency: $\quad f_{0}=\frac{1}{T_{0}} \rightarrow \omega_{0}=2 \pi f_{0}$ fundamental angular frequency

D. SINUSOIDAL SIGNAL

BASIC DISCRETE TIME SIGNALS

A. UNIT STEP SEQUENCE

- The unit step sequence $u[n]$ is defined as

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

- Note that the value of $u[n]$ at $n=0$ is defined [unlike the continuous-time step function $u(f)$ at $t=01$ and equals unity

$$
u[n-k]= \begin{cases}1 & n \geq k \\ 0 & n<k\end{cases}
$$

B. THE UNIT IMPULSE SEQUENCE

- The unit impulse (or unit sample) sequence $\delta[n]$ is defined as

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

$$
\delta[n-k]= \begin{cases}1 & n=k \\ 0 & n \neq k\end{cases}
$$

C. COMPLEX EXPONENTIAL SEQUENCES

- The complex exponential sequence is of the form:

$$
x[n]=e^{\Omega_{0} n}=\cos \Omega_{0} \eta+j \sin \Omega_{0} n
$$

(a)

(c)

SYSTEM AND
 CLASSIFICATION OF SYSTEMS

A. SYSTEM REPRESENTATION

- A system is a mathematical model of a physical process that relates the input (or excitation) signal to the output (or response) signal.
- Let x and y be the input and output signals, respectively, of a system. Then the system is viewed as a transformation (or mapping) of x into y.
- This transformation is represented by the mathematical notation $y=T x$
- Where T is the operator representing some well-defined rule by which x is transformed into y.

B. CONTINUOUS TIME AND DISCRETE TIME SYSTEMS

- If the input and output signals x and y are continuous-time signals, then the system is called a continuous-time system

- If the input and output signals are discrete-time signals or sequences, then the system is called a discrete-time system

C. SYSTEM WITH MEMORY AND WITHOUT MEMORY

- A system is said to be memoryless if the output at any time depends on only the input at that same time.
- Otherwise, the system is said to have memory.
- An example of a memoryless system is a resistor R with the input $x(t)$ taken as the current and the voltage taken as the output $\mathrm{y}(\mathrm{t}$). The input-output relationship (Ohm's law) of a resistor is:

$$
y(t)=R x(t)
$$

- An example of a system with memory is a capacitor C with the current as the input $x(t)$ and the voltage as the output $y(t)$

$$
y(t)=\frac{1}{C} \int_{-\infty}^{t} x(T) d T
$$

- A second example of a system with memory is a discrete-time system whose input and output sequences are related by

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

D. CHUSAL AND NON CHUSAL

- A system is called causal if its output $y(t)$ at an arbitrary time $t=t$, depends on only the input $x(t)$ for $t \leq$ to.
- That is, the output of a causal system at the present time depends on only the present and/or past values of the input, not on its future values.
- Thus, in a causal system, it is not possible to obtain an output before an input is applied to the system.
- A system is called noncausal if it is not causal.

$$
\begin{gathered}
y(t)=x(t+1) \\
y[n]=x[-n]
\end{gathered}
$$

**Note that all memoryless systems are causal, but not vice versa.

E. LINIER SYSTEMS AND NONLINIER SYSTEMS

- notation $y=T x$
- If the operator T satisfies the following two conditions, then T is called a linear operator and the system represented by a linear operator T is called a linear system:

1. Additivity

Given that $T x_{1}=y_{1}$ and $T x_{2}=y_{2}$ then $T\left\{x_{1}+x_{2}\right\}=y_{1}+y_{2}$
2. Homogeneity or scaling

$$
T\{\alpha x\}=\alpha y
$$

- Any system that does not satisfy Eq. 1 and/or Eq. 2 is classified as a nonlinear system.
- Example non linier system: $y=x^{2}$ and $y=\cos x$

F. TIME-INVARIANT AND TIME VARYING SYSTEM

- A system is called time-invariant if a time shift (delay or advance) in the input signal causes the same time shift in the output signal. Thus, for a continuous-time system, the system is time-invariant if:

$$
\begin{aligned}
& T\{x(t-\tau)\}=y(t-\tau) \\
& T\{x[n-k]\}=y[n-k]
\end{aligned}
$$

- A system which does not satisfy those equation (continuous-time system) or (discrete-time system) is called a time-varying system.

H. LINIAR TIME INVARIANT SYSTEMS

- If the system is linear and also time-invariant, then it is called a linear rime-invariant (LTI) system.

H. STABLE SYSTEMS

- A system is bounded-input/bounded-output (BIBO) stable if for any bounded input x defined by:

$$
|x| \leq k_{1}
$$

- the corresponding output y is also bounded defined by $|y| \leq k_{2}$
- Where k , and k , are finite real constants.

I. FEEDBACK SYSTEM

- A special class of systems of great importance consists of systems having feedback.
- In a feedback system, the output signal is fed back and added to the input to the system as shown

