

FEG2D3 -INW-

2016

INTRODUCTION

- The concept and theory of signals and systems are needed in almost all electrical engineering fields and in many other engineering and scientific disciplines as well.
- In this chapter we introduce the mathematical description and representation of signals and systems and their classifications.
- We also define several important basic signals essential to our studies.

SIGNALS AND CLASSIFICATION OF

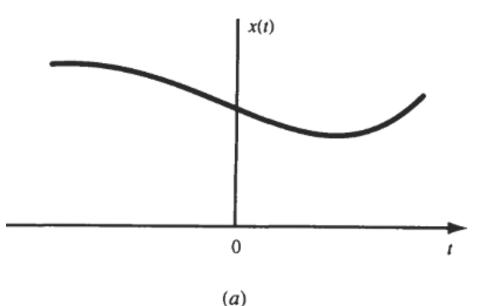
SIGNALS

SIGNALS

- A signal is a function representing a physical quantity or variable, and typically it contains information about the behavior or nature of the phenomenon.
- For instance, in a RC circuit the signal may represent the voltage across the capacitor or the current flowing in the resistor.
- Mathematically, a signal is represented as a function of an independent variable t. Usually t represents time.
- Thus, a signal is denoted by x(t)

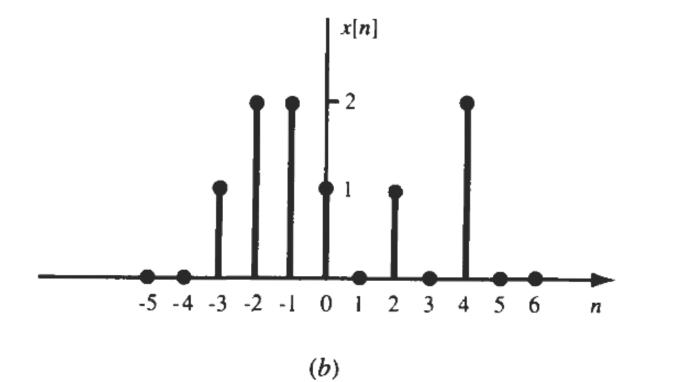
A. CONTINUOUS TIME SIGNALS

• x(t) is a continuous-time signal if t is a continuous variable.



- •x(t) → if t is a discrete variable, x(t) is defined at discrete times
- Then, x (t) is a discrete-time signal
- Discrete time signals is defined at discrete times
- Often identified as a sequence of numbers
- Denoted by:

```
\{x_n\} or x[n], where n = integer
```

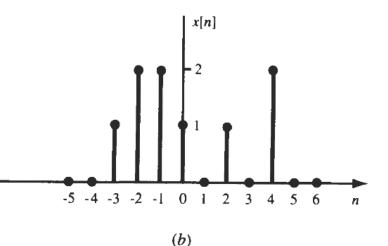
- x[n] may represent a phenomenon for which the independent variable is inherently discrete
- x[n] may be obtained by sampling a continuous time signal x(t) such as:

$$x(t_0)$$
, $x(t_1)$, ..., $x(t_n)$, ...
Or in a shorter form as
 $x[0]$, $x[1]$, ..., $x[n]$, ...
Or
 $x_0, x_1, x_2, ..., x_n, ...$
So...
 $x_n = x[n] = x(t_n)$

- x_n's are called samples and the time interval between them is called the sampling interval.
- When the sampling intervals are equal / uniform sampling, then

 $x_{n} = x[n] = x (nT_{s}),$

where the constant $\ensuremath{\mathbb{T}}$, is the sampling interval



A discrete-time signal x [n] can be defined in two ways:

1. We can specify a rule for calculating the nth value of the sequence. For example:

$$x[n] = x_n = \begin{cases} \left(\frac{1}{2}\right)^n & n \ge 0\\ 0 & n < 0 \end{cases}$$
$$\{x_n\} = \{1, \frac{1}{2}, \frac{1}{4}, \dots, \left(\frac{1}{2}\right)^n, \dots\}$$

2. We can also explicitly list the values of the sequence. For example, the sequence shown in (b) can be written as

$$\{x_n\} = \{\dots, 0, 0, 1, 2, 2, 1, 0, 1, 0, 2, 0, 0, \dots \\ \uparrow \\ \{x_n\} = \{1, 2, 2, 1, 0, 1, 0, 2\}$$

FEG2D3 - INW -

$$\{x_n\} = \{\dots, 0, 0, 1, 2, 2, 1, 0, 1, 0, 2, 0, 0, \dots\}$$

$$\{x_n\} = \{1, 2, 2, 1, 0, 1, 0, 2\}$$

- We use the arrow to denote the n = 0 term.
- We shall use the convention that if no arrow is indicated, then the first term corresponds to n = 0 and all the values of the sequence are zero for n < 0.
- The sum and product of two sequences are defined as follows

$$\{c_n\} = \{a_n\} + \{b_n\} \longrightarrow c_n = a_n + b_n$$

$$\{c_n\} = \{a_n\} \{b_n\} \longrightarrow c_n = a_n b_n$$

$$\{c_n\} = \alpha \{a_n\} \longrightarrow c_n = \alpha a_n \qquad \alpha = \text{constant}$$

FEG2D3 - INW -

C. ANALOG AND DIGITAL SIGNALS

- If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where a may be -∞ and b may be +∞, then the continuous-time signal x(t) is called an analog signal.
- If a discrete-time signal x [n] can take on only a finite number of distinct values, then we call this signal a digital signal.

D. REAL AND COMPLEX SIGNALS

- A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal if its value is a complex number.
- A general complex signal x(t) is a function of the form

 $x(t) = x_1(t) + jx_2(t)$

Where $x_1(t)$ and $x_2(t)$ are real signals and $j = \sqrt{-1}$

* Note that t represents either a continuous or a discrete variable.

E. DETERMINISTIC AND RANDOM SIGNALS

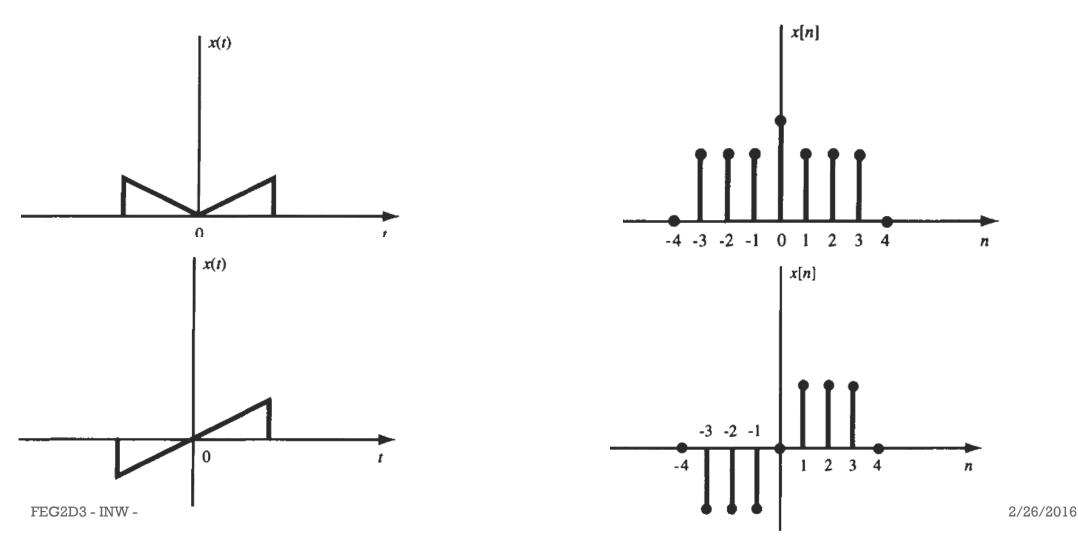
- Deterministic signals are those signals whose values are completely specified for any given time.
- Thus, a deterministic signal can be modeled by a known function of time t.
- Random signals are those signals that take random values at any given time and must be characterized statistically.
- Random signals will not be discussed in this text.

E EVEN AND ODD SIGNALS

• A signal x(t) or x[n] is referred to as an even signal if: x(-t) = x(t)x[-n] = x[n]

• A signal x(t) or x[n] is referred to as an odd signal if: x(-t) = -x(t)x[-n] = -x[n]

E EVEN AND ODD SIGNALS



16

E EVEN AND ODD SIGNALS

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even and one of which is odd.

 $\begin{aligned} x(t) &= x_e(t) + x_0(t) \\ x[n] &= x_e[n] + x_0[n] \end{aligned}$

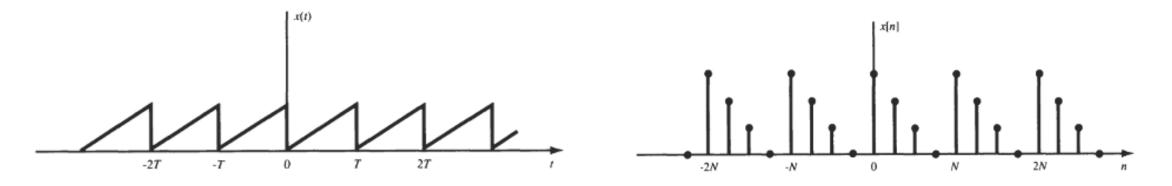
Where:

- $x_{e}(t) = \frac{1}{2} \{x(t) + x(-t)\} \text{ even part of } x(t)$ $x_{e}[n] = \frac{1}{2} \{x[n] + x[-n]\} \text{ even part of } x[n]$ $x_{o}(t) = \frac{1}{2} \{x(t) - x(-t)\} \text{ odd part of } x(t)$ $x_{o}[n] = \frac{1}{2} \{x[n] - x[-n]\} \text{ odd part of } x[n]$
- the product of two even signals or of two odd signals is an even signal
 that the product of an even signal and an odd signal is an odd signal

E. PERIODIC AND NON PERIODIC SIGNALS

- A continuous-time signal x(t) is said to be periodic with period T if there is a positive nonzero value of T for which

$$x(t+T) = x(t)$$
 all t



x(t + mT) = x(t) all t and any integer m

H. ENERGY & POWER SIGNALS

• Consider v(t) to be the voltage across a resistor R producing a current i(t). The instantaneous power p(t) per ohm is defined as:

$$p(t) = \frac{v(t)i(t)}{R} = i^2(t)$$

• Total energy E and average power P on a per-ohm basis are:

$$E = \int_{-\infty}^{\infty} i^2(t) dt \text{ joules}$$
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} i^2(t) dt \text{ watts}$$

H. ENERGY & POWER SIGNALS

 For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) and x[n] are defined as

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \qquad \qquad E = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

Normalized average power P of x(t) and x[n] are defined as:

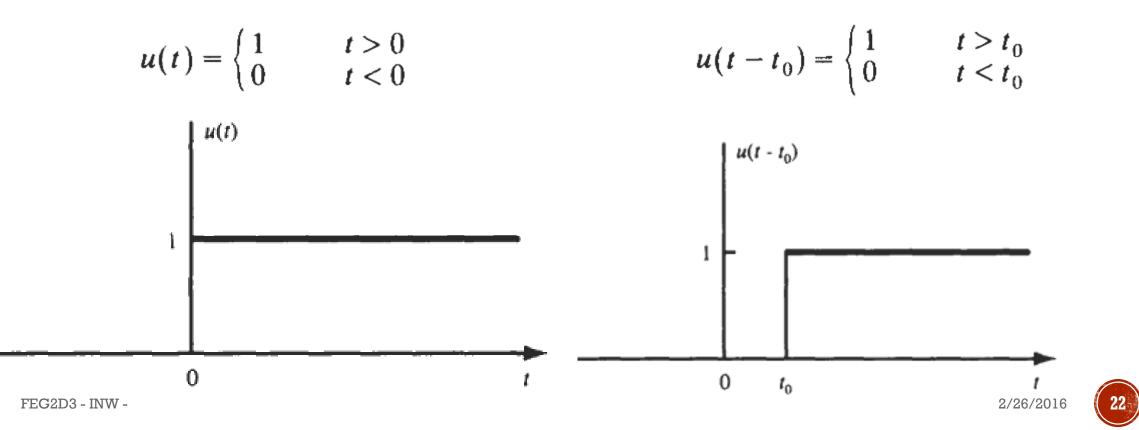
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \qquad P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

BASIC CONTINUOUS TIME SIGNALS

FEG2D3 - INW -

A. UNIT STEP FUNCTION

• The unit step function u(t), also known as the Heaviside unit function, is defined as:

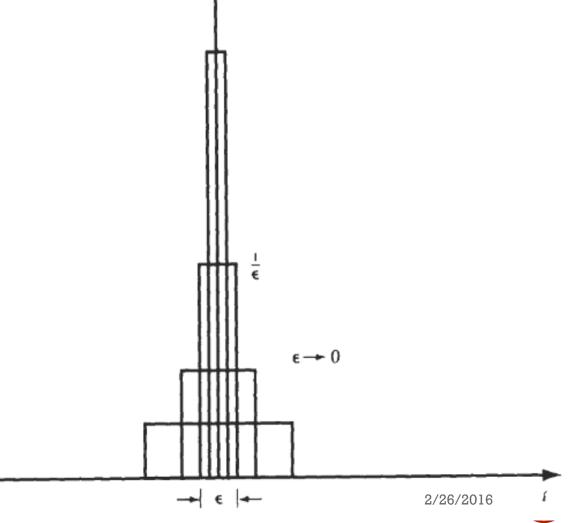


B. UNIT IMPULSE FUNCTION/IMPULS SIGNAL

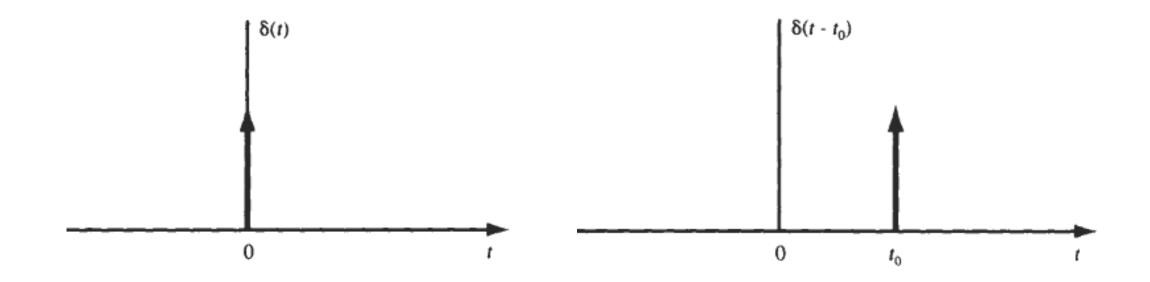
- The unit impulse function $\delta(t)$, also known as the Dirac delta function, plays a central role in system analysis.
- Traditionally, δ(t) is often defined as the limit of a suitably chosen conventional function having unity area over an infinitesimal time interval as shown below:

$$\delta(t) = \begin{cases} 0 & t \neq 0\\ \infty & t = 0 \end{cases}$$
$$\int_{-\epsilon}^{\epsilon} \delta(t) \, dt = 1$$

FEG2D3 - INW -



B. UNIT IMPULSE FUNCTION/IMPULS SIGNAL



C. COMPLEX EXPONENTIAL SIGNALS

- The complex exponential signal $x(t) = e^{j\omega 0t}$ is an important example of a complex signal
- 1. Exponentially Increasing sinusoidal signal
- 2. Exponentially decreasing sinusoidal signal

x(t)2/26/2016

x(t)

C. COMPLEX EXPONENTIAL SIGNALS

• By using Euler's formula.....

$$x(t) = e^{j\omega_0 t} = \cos\omega_0 t + j\sin\omega_0 t$$

- X(t) is a complex signals, whose real part is $cos\omega_0 t$ and imaginary part is $jsin\omega_0 t$
- The fundamental period T_0 of x(t) is given by:

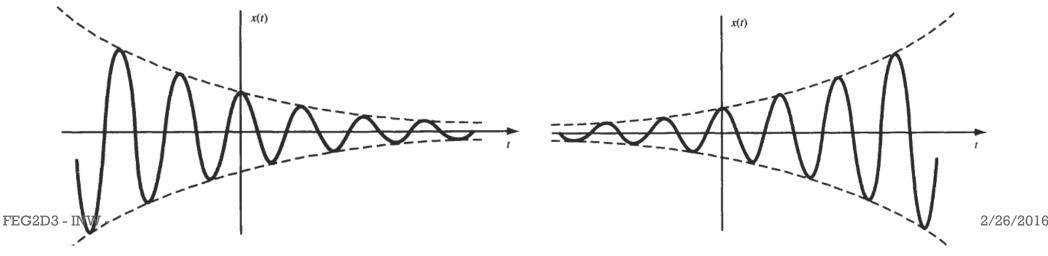
$$T_0 = \frac{2\pi}{\omega_0}$$

GENERAL COMPLEX EXPONENTIAL SIGNALS

• Lets $s = \sigma + j\omega$ be a complex number. We define x(t) as:

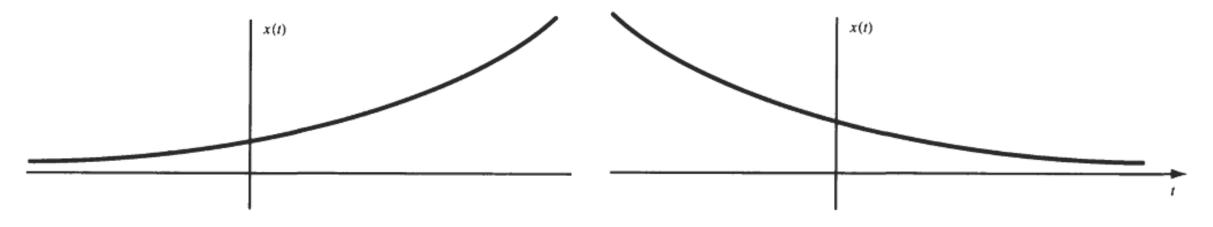
$$x(t) = e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t}(\cos \omega t + j \sin \omega t)$$

• Then signal x(t) is known as a general complex exponential signal whose real part $e^{\sigma t} cos\omega t$ and imaginary part $e^{\sigma t} sin\omega t$ are exponentially increasing ($\sigma > 0$) or decreasing ($\sigma < 0$) sinusoidal signals

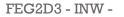


REAL EXPONENTIAL SIGNALS

• Note that if $s = \sigma$ (a real number) *reduce a real exponential signal



Continuous-time real exponential signals $\sigma > 0 \& \sigma < 0$ (growing exp & decaying exp)



D. SINUSOIDAL SIGNAL

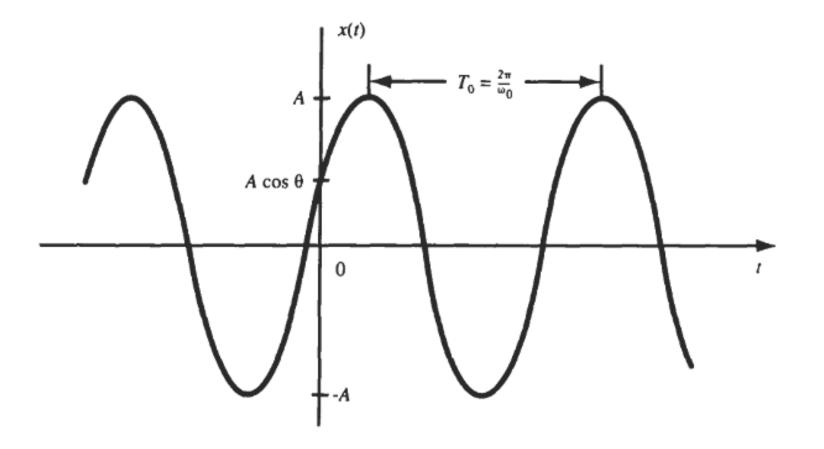
- A continuous-time sinusoidal signal can be expressed as $x(t) = Acos(\omega_0 t + \theta)$
 - A is the amplitude (real),
 - ω is the radian frequency in radians per second, and
 - θ is the phase angle in radians

• Period:
$$T_0 = \frac{2\pi}{\omega_0}$$

Fundamental frequency:

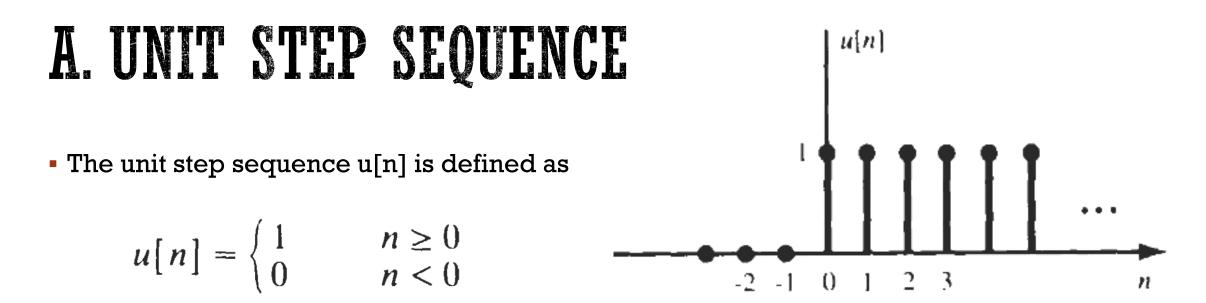
$$f_0 = \frac{1}{T_0} \rightarrow \omega_0 = 2\pi f_0$$
 fundamental angular frequency

D. SINUSOIDAL SIGNAL

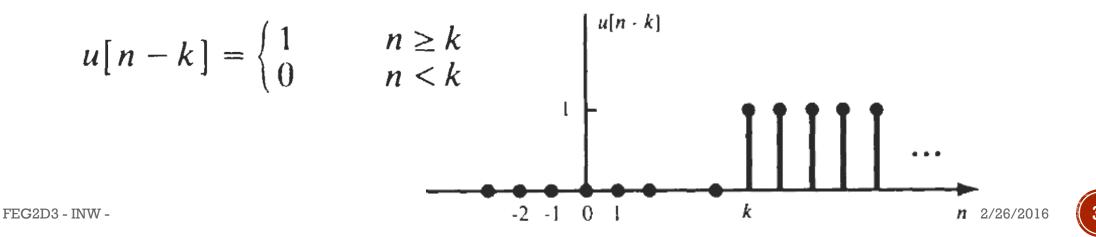


BASIC DISCRETE TIME SIGNALS

FEG2D3 - INW -



 Note that the value of u[n] at n = 0 is defined [unlike the continuous-time step function u(f) at t = 01 and equals unity



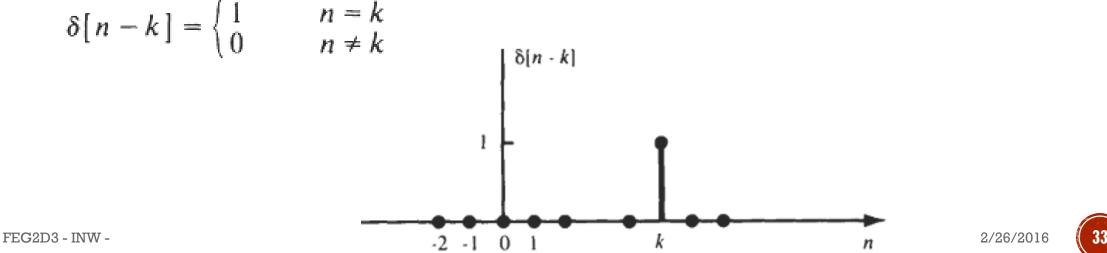
B. THE UNIT IMPULSE SEQUENCE

• The unit impulse (or unit sample) sequence $\delta[n]$ is defined as

$$\delta[n] = \begin{cases} 1 & n = 0\\ 0 & n \neq 0 \end{cases}$$

$$o[n] = \langle 0 \qquad n \neq$$

 $\delta[n-k] = \begin{cases} 1 & n=k\\ 0 & n\neq k \end{cases}$



 $\delta(n)$

-2 -1

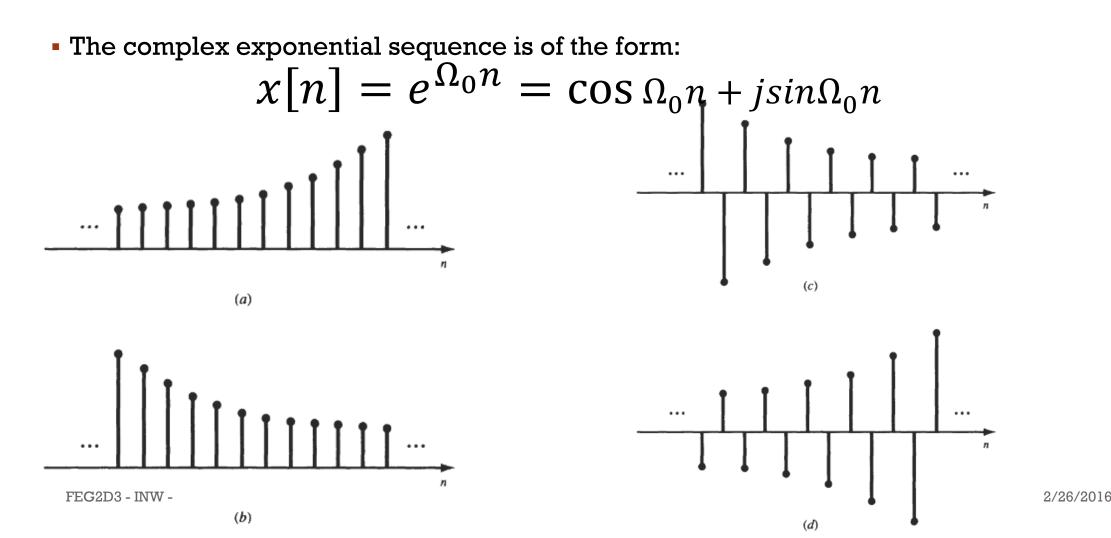
0

2

3

n

C. COMPLEX EXPONENTIAL SEQUENCES



34

SYSTEM AND CLASSIFICATION OF

SYSTEMS

FEG2D3 - INW -

A. SYSTEM REPRESENTATION

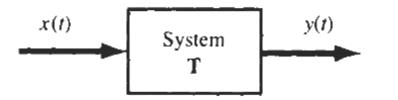
- A system is a mathematical model of a physical process that relates the input (or excitation) signal to the output (or response) signal.
- Let x and y be the input and output signals, respectively, of a system. Then the system is viewed as a transformation (or mapping) of x into y.
- This transformation is represented by the mathematical notation y = Tx
- Where T is the operator representing some well-defined rule by which x is transformed into y.



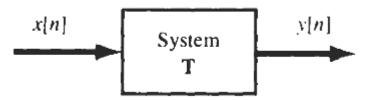
FEG2D3 - INW -

B. CONTINUOUS TIME AND DISCRETE TIME SYSTEMS

 If the input and output signals x and y are continuous-time signals, then the system is called a continuous-time system



 If the input and output signals are discrete-time signals or sequences, then the system is called a discrete-time system



C. SYSTEM WITH MEMORY AND WITHOUT MEMORY

- A system is said to be memoryless if the output at any time depends on only the input at that same time.
- Otherwise, the system is said to have memory.
- An example of a memoryless system is a resistor R with the input x(t) taken as the current and the voltage taken as the output y(t). The input-output relationship (Ohm's law) of a resistor is: y(t) = Rx(t)
- An example of a system with memory is a capacitor C with the current as the input x(t) and the voltage as the output y(t)

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(T) dT$$

A second example of a system with memory is a discrete-time system whose input and output sequences are related by

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

D. CAUSAL AND NON CAUSAL

- A system is called causal if its output y(t) at an arbitrary time t = t, depends on only the input x(t) for t ≤ to.
- That is, the output of a causal system at the present time depends on only the present and/or past values of the input, not on its future values.
- Thus, in a causal system, it is not possible to obtain an output before an input is applied to the system.
- A system is called *noncausal if it is not causal*.

y(t) = x(t+1)y[n] = x[-n]

**Note that all memoryless systems are causal, but not vice versa.

E. LINIER SYSTEMS AND NONLINER SYSTEMS

• notation y = Tx

- If the operator T satisfies the following two conditions, then T is called a linear operator and the system represented by a linear operator T is called a linear system:
- 1. Additivity

Given that
$$Tx_1 = y_1$$
 and $Tx_2 = y_2$ then $T\{x_1+x_2\} = y_1 + y_2$

2. Homogeneity or scaling

$$T\{\alpha x\} = \alpha y$$

- Any system that does not satisfy Eq. 1 and/or Eq. 2 is classified as a nonlinear system.
- Example non linier system: $y = x^2$ and $y = \cos x$

E TIME-INVARIANT AND TIME VARYING SYSTEM

 A system is called time-invariant if a time shift (delay or advance) in the input signal causes the same time shift in the output signal. Thus, for a continuous-time system, the system is time-invariant if:

$$T\{x(t-\tau)\} = y(t-\tau)$$

$$T\{x[n-k]\} = y[n-k]$$

 A system which does not satisfy those equation (continuous-time system) or (discrete-time system) is called a time-varying system.

H. LINIAR TIME INVARIANT SYSTEMS

 If the system is linear and also time-invariant, then it is called a linear rime-invariant (LTI) system.

H. STABLE SYSTEMS

 A system is bounded-input/bounded-output (BIBO) stable if for any bounded input x defined by:

 $|x| \le k_1$

- the corresponding output y is also bounded defined by $|y| \le k_2$
- Where k, and k, are finite real constants.

I. FEEDBACK SYSTEM

- A special class of systems of great importance consists of systems having feedback.
- In a feedback system, the output signal is fed back and added to the input to the system as shown

